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Questions typically asked! 
• How much hydraulic head at a point will decline 

by pumping  a nearby well for some specified 
time? 

• What are the expected changes in groundwater 
levels due to climate change? 

• If there is a contaminant spill, where does the 
plume reach in 5 years, 10 years, etc.? 

• What is the capture area for a municipal well? 
 

• How the concentration of a contaminant at a 
point will change in response to some proposed 
remedial scheme? 
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Mathematical framework 
Conceptualization of the problem mathematically, 
 
• Finding the appropriate equations (PDEs) 

describe the physical phenomena (e.g., flow of 
groundwater, contaminant transport, etc.)  
 

• Establishing a domain or region where the 
equation is to be solved 
 

• Defining the conditions along the boundary i.e., 
boundary conditions 
 

• Solution of the governing equation establishes 
the hydraulic heads/concentrations at specified 
(x, y, z) locations 



Mass flux into the control volume(CV) 
   = ρw qx ΔyΔz 
 
Mass flux out of the CV 
  =  
 
 
 
Net flow rate = 
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Conservation of Fluid Mass 
Mass inflow rate – outflow rate = change in mass storage with time 
Any change in mass flowing into the small volume of the aquifer must be 

balanced by a corresponding change in mass flux out of the volume 
or a change in the mass stored in the volume 
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Conservation of Fluid Mass 
Net flow rate may also be determined in y and z 

directions  
 Net accumulation of mass in 

the CV = 
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Conservation Fluid Mass 
• Volume of water in the CV                   = ndxdydz 
• Initial mass (M) of the water in the CV = ρwndxdydz 
• Rate of change of mass = 

 
• This can be rewritten as  
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Conservation Fluid Mass 
• Substituting the expressions for the LHS and RHS terms and 

dividing both sides by ΔxΔyΔz 
 
 
 
 

 
 
 
 
 
 
Net fluid outflow rate for the unit volume equals the time rate of 

change of fluid volume within the unit volume 
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Equations of Groundwater Flow 
• Darcy’s law  
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Conservation Fluid Mass 
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Diffusion Equation 
(Ss/K) = hydraulic  
             diffusivity 
 
Laplace Equation 
(Steady state) 
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Solution of Governing Equations 
Mathematical models (of a physical system for example) must 

have certain initial or boundary conditions applied in order to 
solve the problem 

Solution 
• Solve Equations mathematically 

– Analytical – Exact solution (usually for simple systems, 
simple geometry ie., 1D/2D and Isotropic, homogeneous) 

– Numerical – allows for complex conditions 
– Analog Models –  

• Electrical Resistivity –Hydraulic processes ≈ electrical 
– Capacitance => Ss, Resistors => 1/K,  Volt =>  h  

• Graphical solutions  Flow Nets    -> 2D-Steady state  
• Interpret mathematical results in terms of physical problem 
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Boundary and Initial Conditions 
• A potential field is presumed to exist i.e., h(x,y,z,t) is well-defined scalar 

quantity  
– h(x,y,z,t) changes over space and time 

 
• The changes in potential over space results in gradient. This gradient is a 

vector perpendicular to the equipotential lines, that is, it is colinear with 
the flow for an isotropic porous medium. 
 

• If divergence (ie., net outflow rate per unit volume) is zero, it is steady 
state. Else, unsteady state. 
 

• If flow is steady, given the head or the gradient of head on the entire 
boundary of the region, it is possible to calculate head distribution 
h(x,y,z). 
 

• If flow is unsteady, given the head or the gradient of head on the entire 
boundary of the region and initial conditions, it is possible to calculate 
head distribution h(x,y,z,t). 
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Flow Net 
• Flow line – an imaginary line that traces the path that a 

particle of groundwater would follow as it flows through 
an aquifer. 

• Equipotential line 
• In an isotropic aquifer, flow lines and equipotential lines 

cross at right angles. 
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Flow Nets 
• A network of flow lines and  
    equipotential lines 

 
• A graphical solution approach to                                                        

solve 2-D steady state equations                                                       
for homogeneous isotropic media 
 

• In case of anisotropic aquifer, flow lines cross equipotential 
lines at an angle dictated by the degree of anisotropy 
 

• Assumptions: 
– Aquifer is fully saturated, homogeneous and isotropic. 
– There is no change in potential field with time. 
– Flow is laminar and Darcy’s law is valid.  
– The soil and water are incompressible. 
– All boundary conditions are known. 
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Modeling 
Model is   

an approximation of the actual system 
whose inputs and outputs are measurable hydrological 

variables, and its structure is a set of equations linking the 
inputs and outputs 

any device that represents an approximation of a field 
situation 

Types of models 
• Mathematical – Analytical and Numerical 
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Mathematical Models 
• Simulates groundwater and/or contaminant 

transport indirectly by means of a governing 
equation thought to represent the physical 
processes that occur in the system,  

• Together with equations that describe heads or 
flows along the boundaries of the model. 
 

• The governing equations are solved using 
numerical techniques such as finite difference 
and finite element methods. 
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Schematic of Modeling framework  
(Cengel and Cimbala, 2006) 
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Steps In Modeling  
• Model selection 
 
• Obtain all necessary input data 

 
• Evaluate and refine study objectives in terms of simulations to be 

performed under various watershed conditions 
 
• Choose methods to determine sub-basin hydrographs and flood routing 
 
• Model Calibration 
  
• Model Verification 

 
• Perform model simulations 

 
• Perform sensitivity analysis 

 
• Evaluate usefulness of the model and comment on needed changes    
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Conservation Fluid Mass 
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Diffusion Equation 
(Ss/K) = hydraulic  
             diffusivity 
 
Laplace Equation 
(Steady state) 
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Boundary Conditions 

• A potential field is presumed to exist i.e., h(x,y,z,t) is well-defined scalar 
quantity  

– h(x,y,z,t) changes over space and time 
 

• The changes in potential over space results in gradient. This gradient is a 
vector perpendicular to the equipotential lines, that is, it is colinear with 
the flow for an isotropic porous medium. 
 

• If divergence (ie., net outflow rate per unit volume) is zero, it is steady 
state. Else, unsteady state. 
 

• If flow is steady, given the head or the gradient of head on the entire 
boundary of the region, it is possible to calculate head distribution 
h(x,y,z). 
 

• If flow is unsteady, given the head or the gradient of head on the entire 
boundary of the region and initial conditions, it is possible to calculate 
head distribution h(x,y,z,t). 
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Problems in 2-D Space 
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MODFLOW 
• Most popular 3-D groundwater flow simulation models  
• MODFLOW-2005 is a new version of the finite-difference 

ground-water model commonly called MODFLOW. 
• GWF Process of MODFLOW has been divided into 

"packages." A package is the part of the program that deals 
with a single aspect of simulation 

• Basic 
• Block-Centered Flow 
• Layer-Property Flow 
• Horizontal Flow Barrier 
• Well 
• Recharge 

 

•General-Head Boundary 
•River 
•Drain 
•Evapotranspiration 
•Strongly Implicit Procedure 
•Preconditioned Conjugate Gradient 
•Direct Solver 
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• 3-D movement of ground water of constant density 
through porous earth material may be described by the 
partial-differential equation 
 
 
 

• Kxx, Kyy, and Kzz are values of hydraulic conductivity along the x, y, 
and z coordinate axes, which are assumed to be parallel to the 
major axes of hydraulic conductivity (L/T); 

• h is the potentiometric head (L); 
• W is a volumetric flux per unit volume representing sources and/or 

sinks of water, with W<0.0 for flow out of the ground-water system, 
and W>0.0 for flow into the system (T-1); 

• SS is the specific storage of the porous material (L-1); and 

MODFLOW 
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• simulates steady and nonsteady flow in an irregularly 
shaped flow system in which aquifer layers can be confined, 
unconfined, or a combination of confined/unconfined.  
 
 

MODFLOW 

A discretized hypothetical aquifer system. (Modified from 
McDonald and Harbaugh, 1988.) 
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MODFLOW 

Discretized aquifer showing boundaries and 
cell designations. (Modified from McDonald 
and Harbaugh, 1988.) 

Schemes of vertical discretization.  
(From McDonald and Harbaugh, 1988.) 

Coarse Sand 
Silt 
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MODFLOW 

Indicies for the six adjacent cells 
surrounding cell i,j,k (hidden). (Modified 
from McDonald and Harbaugh,1988.) 

Flow into cell i,j,k from cell i,j-1,k. (Modified 
from McDonald and Harbaugh, 1988.) 
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• A Graphical User Interface for MODFLOW–2005 and PHAST  
 
 

MODELMUSE 

The main window of ModelMuse.  
30 



• ModelMuse has tools to generate and edit the model grid.  
• It also has a variety of interpolation methods and 

geographic functions that can be used to help define the 
spatial variability of the model. 

MODELMUSE 
Working Area 
 
Top, Front and Side views of 
the study area domain. 
 
These view options combined 
with selection of grids will help 
in assigning the parameters. 
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• Work with any of the three examples 
• Run the model and interpret the results 
• Investigate the effect of changing some pumping rates 

and boundary conditions, hydraulic conductivities on the 
flow regime – head distribution, flows across the 
boundaries, etc. 

MODELMUSE 
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Learning Outcomes 
If completed correctly, you will be able to  
• Define hydraulic head and gradient of hydraulic head 
• Apply Darcy’s law 
• Distinguish the governing equations for the  

– confined and unconfined aquifers;  
– steady and unsteady conditions 

• Solve the equations graphically using flownets  
• Develop and apply equations to  

– estimate the steady flows in confined and unconfined aquifers  
– Calculate the water table level at different locations in unconfined 

aquifers  
• Modeling Basics and MODFLOW Set up using 

ModelMuse 
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