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Abstract. We present a probability based theoretical scheme for build-3

ing process-based models of uncertain hydrological systems, thereby unify-4

ing hydrological modeling and uncertainty assessment. Uncertainty for the5

model output is assessed by estimating the related probability distribution6

via simulation, thus shifting from one to many applications of the selected7

hydrological model. Each simulation is performed after stochastically per-8

turbing input data, parameters and model output, this latter by adding ran-9

dom outcomes from the population of the model error, whose probability dis-10

tribution is conditioned on input data and model parameters. Within this11

view randomness, and therefore uncertainty, is treated as an inherent prop-12

erty of hydrological systems. We discuss the related assumptions as well as13

the open research questions. The theoretical framework is illustrated by pre-14

senting real-world and synthetic applications. The relevant contribution of15

this study is related to proposing a statistically consistent simulation frame-16

work for uncertainty estimation which does not require model likelihood com-17

putation and simplification of the model structure. The results show that un-18

certainty is satisfactorily estimated although the impact of the assumptions19

could be significant in conditions of data scarcity.20
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1. Introduction

Process-based modeling has been a major focus for hydrologists for four decades al-21

ready. In fact, more than forty years passed since Freeze and Harlan [1969] proposed22

their “physically-based digitally simulated hydrologic response model”, which set the ba-23

sis for detailed process-based simulation in hydrology. The terms “physically-based” and24

“process-based” models are often used interchangeably, in contrast to purely empirical25

models. Other times, “process-based” is regarded to include a family of models broader26

than “physically-based”. In fact, through the years it has become clear that there are27

no purely “physically-based” models for large hydrological systems. All models include28

assumptions and simplifications that depart from pure deductive physics and thus the29

term “process-based” is more accurate and general.30

A comprehensive review of the research activity related to physically-based models was31

presented by Beven [2002]. Perhaps one of the most known process-based models in hy-32

drology is the spatially-distributed Système Hydrologique Européen (SHE, see Abbot et al.33

[1986]), which has been the subject of many contributions. Another relevant contribution34

was given by Reggiani et al. [1998, 1999] who introduced the concept of “representative35

elementary watershed”. Many other approaches were recently proposed which refer to36

process-based models in general. In fact, in the past ten years, process-based modeling,37

in contrast to empirical modeling, has been one of the targets of the well known “Pre-38

diction in Ungauged Basins” (PUB; see Kundzewicz [2007]) initiative of the International39

Association of Hydrological Sciences (IAHS).40
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Process-based models are almost always formulated in deterministic form, by setting41

up a set of mathematical equations. However, during the last four decades it became42

increasingly clear that deterministic models in hydrology are never accurate and imply43

uncertainty whose estimation is important for real world decision making (see, for in-44

stance, Grayson et al. [1992]; Beven [1989, 2001]). Some authors expressed their belief45

that uncertainty in hydrology is epistemic and therefore can be in principle eliminated46

through a more accurate representation of the related processes [Sivapalan et al., 2003].47

However, recent research suggested that uncertainty is unavoidable in hydrology, origi-48

nating from natural variability and related to inherent unpredictability in deterministic49

terms, which is typically referred to as randomness (see, for instance, Montanari et al.50

[2009]; Koutsoyiannis et al. [2009]). The latter concept implies that to produce a fully51

deterministic model that would eliminate uncertainty is impossible and that modeling52

schemes need to explicitly recognise its role [Beven, 2002].53

Indeed, recent contributions were proposed where deterministic hydrological modeling54

was efficiently coupled with uncertainty assessment. The most relevant example is the55

Generalised Likelihood Uncertainty Estimation (GLUE) [Beven and Binley , 1992], where56

multiple modeling schemes are retained provided they are behavioral in the face of uncer-57

tainty. GLUE was long discussed and sometimes criticized for using informal approaches58

for statistical inference and in particular for computing the model likelihood (see, for in-59

stance, Stedinger et al. [2008] and Mantovan and Todini [2006]), but was used in several60

practical applications. Relevant recent contributions to GLUE were given by Liu et al.61

[2009], who proposed the limits of acceptability approach to retain behavioral simulations62

(see also Winsemius et al. [2009]), and Krueger et al. [2010], who explicitly considered the63
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contribution of data, parameter and model uncertainty via ensemble simulation. How-64

ever, GLUE still suffers from subjectivity, mainly related to the identification of behavioral65

models and probability estimation for their output [Stedinger et al., 2008], which in GLUE66

is obtained through (possibly informal) likelihood estimation for any candidate model.67

A second relevant approach to uncertainty assessment was proposed by Krzysztofowicz68

[2002] who introduced the Bayesian Forecasting System (BFS), which aims to estimate the69

probability distribution for a future river stage or river flow. The method is based on the70

preliminary identification of a prior distribution for the unknown future variable, which is71

obtained by approximating the river flow process with a linear model, therefore expressing72

future observations depending on past ones. Then, the posterior distribution is obtained73

by including the information provided by the hydrological model prediction. The proba-74

bility distributions are estimated in the Gaussian domain by normalizing predictors and75

predictand through the normal quantile transform [Krzysztofowicz , 2002]. The method76

assumes that the dominant source of uncertainty is related to rainfall forecasting, thus77

focusing on a very specific type of application. The above assumption implies that hydro-78

logical uncertainty is estimated by introducing restrictive approximations. In particular,79

parameter uncertainty for the hydrological model is neglected.80

Estimation of hydrological uncertainty is also the target of the BATEA method [Kavetski81

et al., 2006], where a novel approach is introduced to account for all sources of data82

uncertainty. In particular, rainfall uncertainty is accounted for by introducing a rainfall83

multiplier. The probability distribution for model parameters is estimated through the84

Bayes theorem and therefore a formulation for the model likelihood needs to be identified.85
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For example, Kavetski et al. [2006] adopted a likelihood function depending on the sum86

of squared residuals.87

In recent times, there has been a renewed interest for multi-model approaches, which88

estimate unknown hydrological variables by averaging outputs from several models. This89

possibility is also offered by GLUE [Krueger et al., 2010]. Another relevant example is90

the Maximum Likelihood Bayesian Model Averaging (MLBMA, see Neuman [2003]; Ye91

et al. [2008]). Multi-model techniques may require likelihood estimation to derive the92

probability that each model is correct.93

The above considerations show that model likelihood estimation is a key step for many94

uncertainty assessment methods. It is well known that likelihood computation for hy-95

drological models is a very challenging task, due to the complex structure of the model96

error which makes its statistical description complicated. Interesting contributions were97

recently proposed by Schoups and Vrugt [2010] and Pianosi and Raso [2012] who pro-98

posed innovative likelihood formulations. However, they are still based on assumptions99

that may be restrictive in some practical applications, like the use of a model bias correc-100

tion factor in Schoups and Vrugt [2010] and the hypothesis of independence for the model101

error in Pianosi and Raso [2012]. Moreover, there is a drawback related to the use of102

the likelihood to estimate the reliability of a model in hydrology: in fact, the likelihood is103

usually estimated in calibration, as it is done in statistics, but is used to assess uncertainty104

of out-of-sample predictions. Therefore it is implicitly assumed that model performances105

in calibration are analogous to those experienced in the evaluation period. Namely, one106

assumes that the model errors during calibration are statistically representatives of those107

that will be experienced in applications. Actually, this assumption is valid only under the108
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condition that the hydrological model is stationary and not overparametrised, but fails in109

all instances in which the actual model reliability is expected to deteriorate with respect110

to calibration (as it frequently happens in hydrology). This limitation, in the context111

of GLUE, is recognised by Beven [2006], p. 27. To overcome it, likelihood should be112

computed by running the model, after optimizing its parameters, during an evaluation113

period. Namely, one should refer to data that were not used in calibration and similar114

conditions with respect to those that are expected in applications.115

An approach to hydrological uncertainty assessment which does not require likelihood116

estimation was presented by Götzinger and Bárdossy [2008] who assumed that the model117

error is given by the sum of the random components due to input uncertainty and pro-118

cess description uncertainty. To estimate this latter contribution, they assumed that the119

standard deviation of the random contribution of a certain process (model structural120

uncertainty) to the total uncertainty is proportional to the sensitivity of the output to121

the related parameter group. The above assumptions may not be satisfied in practical122

applications (see, for instance, Beven [2006]).123

Likelihood computation might also be avoided by using data assimilation methods, for124

which a comprehensive review, from a system-perspective, was presented by Liu and Gupta125

[2007]. In fact, the Bayesian uncertainty assessment method developed by Bulygina and126

Gupta [2009, 2010, 2011] assumes that the hydrological system evolves in time according127

to a first-order Markov state-space process and the relationships among the relevant vari-128

ables (inputs, states and outputs) is represented through the direct estimation of their129

joint probability density function. This latter takes uncertainty into account and is con-130

ditioned on both the observed data and the available conceptual understanding of system131
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physics, therefore obtaining a flexible and statistically consistent approach. Bulygina and132

Gupta [2010] note that additional research is needed to make the method applicable to133

complex system models. Moreover, if no or weakly informative prior is used, any predic-134

tion is mainly based on the conditions observed during the considered observation period135

only, and therefore particular care should be used when extrapolating to out-of-sample136

conditions.137

The purpose of this paper is to introduce a novel methodological scheme for estimating138

the probability distribution of the output from a process-based (deterministic) hydrolog-139

ical model. The distinguishing feature of the approach herein proposed is that likelihood140

computation can be avoided, without imposing any restriction to model complexity, there-141

fore complementing the features of the techniques reviewed above. Conversely, the most142

significant limitation is that the probability distributions of input data, model parameters143

and model error are needed as input information. It is well known that their definition144

is still a challenging task in practical applications. The underlying theory is derived in145

a probabilistic framework, in which Bayesian concepts can be introduced to take into146

account prior information. Statistical consistency of the scheme is ensured by introducing147

assumptions whose reliability is discussed below. The scheme itself is based on converting148

a deterministic hydrological model into a stochastic one, therefore incorporating random-149

ness in hydrological modeling as a fundamental component. In fact, in our framework150

uncertainty is recognized as an inherent property of the water cycle, taking into account151

randomness of atmospheric processes, drop paths, soil properties, turbulence in fluid me-152

chanics and many others.153
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In the next Section of the paper we provide more details on the rationale for stochastic154

process-based modeling. The third section of the paper is dedicated to the theory under-155

lying the new blueprint that we are proposing. The fourth section describes the practical156

application. The fifth section reviews the underlying assumptions and their limitations,157

while in the sixth section two examples of application are presented. In the seventh section158

we discuss the value of uncertainty estimation as a learning process. Finally we discuss159

open research questions and draw some conclusions.160

2. The rationale for stochastic process-based modeling

In a deterministic model the outcomes are precisely determined through known rela-161

tionships among states and events, without any room for random variation. A given162

input (including initial and boundary conditions) will always produce the same output163

and therefore uncertainty is not taken into account in a formal manner. Uncertainty as-164

sessment, when needed, is often carried out indirectly, e.g., by post processing the results.165

Such separation of targets has been favoured by the illusion that uncertainty can be elim-166

inated by refining deterministic modeling (see, for instance, Sivapalan et al. [2003]). Such167

refining has commonly been envisaged through a “reductionist” approach, in which all168

heterogeneous details of a catchment would be modeled explicitly and the modeling of de-169

tails would provide the behavior of the entire system (for an extended discussion see Beven170

[2002]). However, some researchers have pointed out that this is a hopeless task [Savenije,171

2009]. Indeed, physical processes governing the water cycle involve inherent randomness;172

for instance, meteorological processes are governed by the laws of thermodynamics, which173

are, essentially, statistical physical laws. Moreover, some degree of approximation is un-174

avoidable in process-based modeling in hydrology [Beven, 1989]. In fact, physical laws give175
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simple and meaningful descriptions of problems in simple systems, but their application176

in hydrological systems demands simplification, lumping and statistical parameterization177

Beven [1989], and sometimes even replacing by conceptual or statistical laws (e.g. the178

Manning formula). Therefore, uncertainty in hydrology is not just related to temporary179

knowledge limitations (epistemic uncertainty) but it rather reflects inherent randomness180

and therefore it is unavoidable (see Koutsoyiannis et al. [2009]). Thus, the traditional181

deterministic form of process-based modeling in hydrology is a relevant limitation per se182

which should be overcome by incorporating uncertainty modeling in a fully integrated183

approach.184

In fact, we believe that recognizing uncertainty as an essential attribute of the water185

cycle, which needs to be respected in process-based models, is not just a nuisance. In our186

view, uncertainty estimation is not the remedy against limited representativity of deter-187

ministic schemes (which some may believe to be a transient weakness of current models188

that would be cleared up in the future), but rather a way to fully take into account and189

reproduce in a process-based framework the dynamics of hydrological systems. There are190

many possible alternatives to deal with uncertainty thereby overcoming the limitations of191

purely deterministic approaches, including subjective methods like fuzzy logic, possibil-192

ity theory, and others [Beven, 2009; Montanari , 2007]. We believe that one of the most193

comprehensive, elegant and complete ways of dealing with uncertainty is provided by the194

theory of probability. In fact, probabilistic descriptions allow predictability (supported195

by deterministic laws) and unpredictability (given by randomness) to coexist in a unified196

theoretical framework, therefore giving us the means to efficiently exploit and improve197

the available physical understanding of uncertain systems [Koutsoyiannis et al., 2009].198
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The theory of stochastic processes also allows the incorporation into our descriptions of199

(possibly human induced) changes affecting hydrological processes [Koutsoyiannis , 2011],200

by modifying their physical representation and/or their statistical properties (see, for in-201

stance, Merz and Blöschl [2008a, b]). Finally, subjectivity and expert knowledge can202

be taken into account in prior distribution functions through Bayesian theory [Box and203

Tiao, 1973]. Therefore, in our opinion, a theoretical setting needs to be established where204

probability-based modeling of uncertainty is an essential piece of possibly complex deter-205

ministic models. Such a setting should be flexible enough to allow the deterministic model206

to increase in complexity therefore reducing epistemic uncertainty as much as possible in207

the future, while retaining the essential role of inherent randomness.208

In view of the above considerations and in agreement with Beven [2002], we believe209

that a new blueprint should be established, which should be built on a key concept that is210

actually well known: it is stochastic process-based modeling, which needs to be brought211

to a new light in hydrology. Here the term “stochastic” is used to collectively represent212

probability, statistics and stochastic processes. We formalize the theoretical framework213

for the application of this type of approach here below.214

3. Formulating a Process-Based Model Within a Stochastic Framework

In this section we show how a deterministic model can be converted into an essential part215

of a wider stochastic approach through an analytical transformation. Such a conversion216

is necessary to understand how the probability distribution of the model output can be217

estimated by simulation, without necessarily requiring likelihood computation. From an218

analytical point of view, while the deterministic formulation of the model transforms the219

values of the inputs into an output value, the stochastic version of the model acts on220
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probability densities, rather than single values, of the inputs, producing a probability221

density of the output. That is, the deterministic model acts on values of variables while222

the stochastic model acts on probability densities thereof. From a numerical point of view,223

a deviation (error term) from a single-valued relationship is introduced and the density224

of the output is calculated by repeated applications of the single-valued (deterministic)225

version of the model, where the model output is stochastically perturbed to account for226

uncertainties in a statistically consistent framework. The scheme presented here focuses227

on the conversion of a single deterministic model into a stochastic model. However, a228

multi-model extension, which uses more than one deterministic model, is straightforward229

and will be discussed below.230

In what follows, we use the following definitions:231

• Input uncertainty: it is defined as the uncertainty in the data input to the model,232

which is quantified by an underlying probability distribution. It is related to observation233

methods and networks.234

• Parameter uncertainty: it is defined as the uncertainty in the model parameter vec-235

tor. It is mainly related to model structure, calibration method and consistency of the236

underlying data base.237

• Model error: for a given model, input data and parameter vector, it is defined as238

the difference between model simulation and the corresponding data value. It is mainly239

related to model inability to reproduce the related real processes (model structural error).240

Here, it is assumed to resemble all the uncertainties that are not included in input data241

and parameter uncertainty.242
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• Prediction uncertainty: for a given model (or set of models in a multi-model frame-243

work), it is defined as the uncertainty in the prediction of the true value of a given244

hydrological variable. It is quantified by the probability distribution of the variable to be245

predicted and is typically expressed also in the form of prediction limits of the simulation.246

These latter quantify the range for the variable within which the true value falls with247

probability equal to the confidence level. Prediction uncertainty is formed up by input248

and data uncertainty and model error.249

The analytical procedure to convert a deterministic model into a stochastic framework250

is rather technical and is expressed by equations (1) to (6) below. We would like to251

introduce the new blueprint with a fully comprehensible treatment for those who are not252

acquainted with (or do not like) stochastics. Therefore, the presentation is structured to253

allow the reader who is interested in the application only to directly jump to equations254

(7) and (8) without any loss of practical meaning.255

Hydrological models are typically expressed through a deterministic formulation,256

namely, a single valued transformation. In general, it can be written as257

Q = S (Θ,X) (1)258

where Q is the model prediction which, in a deterministic framework, is implicitly assumed259

to equal the true value of the variable to be predicted. The mathematical relationship S260

represents the model structure, X indicates the input data vector and Θ the parameter261

vector. In the stochastic framework, the hydrological model is expressed in stochastic262

terms, namely [Koutsoyiannis , 2010],263

fQ (Q) = KSfΘ,X (Θ,X) (2)264
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where f indicates a probability density function, and KS is a transfer operator that is265

related to, and generalizes in a stochastic context, the deterministic model S. Within this266

context, Q indicates the true variable to be predicted, which is unknown at the prediction267

time and therefore is treated as a random variable. KS can be generalized to represent a268

so-called stochastic operator, which implements a shift from one to many transformations269

S.270

Note that, by starting from eq. (1) and (2) above, we assume that Q depends on input271

data X and parameters Θ through the model S. Therefore, fQ (and thus uncertainty of Q)272

depends on fX,Θ (and thus uncertainty of X and Θ) and model S uncertainty (through the273

operator KS). It follows that the model error is assumed to resemble all the uncertainties274

that are not included in input data and parameter uncertainty, as it was noted in the275

definitions above. In principle, other uncertainty sources could be considered explicitly.276

For instance, dependence on the initial conditions and therefore their uncertainty can be277

easily included in eq.(1) and (2). In what follows it is omitted to simplify notation (note278

that initial conditions can be included in the input data vector X).279

A stochastic operator can be defined by using a stochastic kernel k (e,Θ,X), with e280

reflecting a deviation from a single valued transformation. Here we will assume that e is a281

stochastic process, with marginal probability density fe(e), representing the model error282

according to the additive relationship283

Q = S (Θ,X) + e . (3)284

Note that alternative structures for the model error can be defined, for instance by in-285

troducing multiplicative terms. The term e accounts for the model uncertainty that was286

discussed above.287
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The stochastic kernel introduced above must satisfy the following conditions:288

k (e,Θ,X) ≥ 0 and
∫
e
k (e,Θ,X) de = 1 , (4)289

which are met if k (e,Θ,X) is a probability density function with respect to e.290

Specifically, the operator KS applying on fΘ,X (Θ,X) is then defined as [Lasota and291

Mackey , 1985, p. 101]292

KSfΘ,X (Θ,X) =
∫

Θ

∫
X
k (e,Θ,X) fΘ,X (Θ,X) dΘdX . (5)293

Under the assumption that parameter uncertainty is independent of data uncertainty,294

for the purpose of estimating the probability density fQ (Q) the joint probability distri-295

bution fΘ,X (Θ,X) can be substituted by the product of the two marginal distributions296

fΘ (Θ) fX (X). Note that we are not excluding dependence among the single elements of297

the input data as well as parameter vector, and also note that this assumption can be298

removed and therefore does not affect the generality of the approach, as we discuss in299

Section 5.300

In view of this latter result, by combining eq. (2) and eq. (5), in which the model error301

can be written as e = Q− S(Θ,X) according to eq. (3), we obtain302

fQ (Q) =
∫

Θ

∫
X
k (Q− S (Θ,X) ,Θ,X) fΘ (Θ) fX (X) dΘdX . (6)303

At this stage we need to identify a suitable expression for k (Q− S (Θ,X) ,Θ,X). Upon304

substituting eq. (3) in eq. (6) and remembering that k is a probability density function305

with respect to the model error e, we recognize that the kernel is none other than the306

conditional density function of e for the given Θ and X, i.e., fe (Q− S (Θ,X) |Θ,X).307

To summarise the whole set of analytical derivations expressed by equations (1) to (6)308

we may see that we passed from the deterministic formulation of the hydrological model309
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expressed by eq. (1), i.e. (to replicate it for clarity),310

Q = S (Θ,X) (7)311

to the stochastic formulation expressed by312

fQ (Q) =
∫

Θ

∫
X
fe (Q− S (Θ,X) |Θ,X) fΘ (Θ) fX (X) dΘdX (8)313

with the following meaning of the symbols:314

- fQ (Q): probability density function of the true value of the hydrological variable to be315

predicted;316

- S (Θ,X): deterministic part of the hydrological model;317

- fe (Q− S (Θ,X) |Θ,X): conditional probability density function of the model error. Ac-318

cording to eq. (2) it can also be written as fe(e|Θ,X);319

- Θ: model parameter vector;320

- fΘ (Θ): probability density function of model parameter vector;321

- X: input data;322

- fX (X): probability density function of input data.323

In eq. (8) the conditional probability distribution of the model error fe (Q− S (Θ,X) |Θ,X)324

is conditioned on input data X and parameter vector Θ. Such formulation would be use-325

ful if we needed to account for changes in time of the conditional statistics of the model326

error (like, for instance, those originated by heteroscedasticity). On the other hand, if we327

assumed that the model error is independent of X and Θ, then eq. (8) can be written in328

the simplified form329

fQ (Q) =
∫

Θ

∫
X
fe (Q− S (Θ,X)) fΘ (Θ) fX (X) dΘdX . (9)330
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The presence of a double integral in eq. (8) and eq. (9) may induce the feeling to the331

reader that the practical application of the proposed framework is cumbersome. Actually,332

the double integral can be easily computed through numerical integration, namely, by333

applying a Monte Carlo simulation procedure that is well known and already used in334

hydrology (see Koutsoyiannis [2010]). The only problem is related to the computational335

requirement, which might become significant when dealing with complex models and large336

basins. We explain the numerical integration in the next section of the paper.337

The above theoretical scheme is very general yet its formalism has been given in terms338

of converting a single deterministic model into a stochastic model. However, the gener-339

ality and flexibility of the approach allow for an extension to a multi-model framework.340

Multi-modeling schemes allow to test multiple working hypotheses and model structures341

thereby testing individual components of process-based models (for an extensive discus-342

sion see Clark et al. [2011]; for an example of application see Krueger et al. [2010]). A343

preliminary estimation of the weight wi of each i-th model is necessary, which quanti-344

fies the importance of each model in the simulation process. The weight is related to345

model performances with respect to other candidate models (Neuman [2003], page 297,346

defines the weight as the probability that the model is correct), and can be estimated347

by using prior judgemental information. Uniform probability across different models is a348

reasonable working hypothesis, which should however be supported by expert knowledge349

to avoid that the same importance is given to models with much dissimilar predicting350

capabilities. The multi-model probability density function fQ(Q) can be written as351

fQ (Q) =
M∑
i=1

wif
(i)
Q (Q) , (10)352

D R A F T August 20, 2012, 12:45am D R A F T



X - 18 MONTANARI AND KOUTSOYIANNIS: PROCESS-BASED MODELING OF UNCERTAIN SYSTEMS

where M is the number of the considered models and f
(i)
Q (Q) is the probability distribution353

derived through eq. (8) or (9) for each single model i, 1 < i ≤M .354

It can be seen that methodological scheme introduced above does not require compu-355

tation of the model likelihood, therefore avoiding to introduce any related assumption.356

However, the statistical properties of the model error still need to be deciphered, although357

in a less detailed (and perhaps non-parametrical) manner, to compute the integrals in eq.358

(8) and (9) (see Section 4 for details on application). In the applications presented in359

this paper we use the meta-Gaussian approach by Montanari and Brath [2004] to this360

end. Its robustness notwithstanding, further research studies are needed to provide an361

efficient statistical characterisation of the errors from hydrological models, which are often362

heteroscedastic and affected by several forms of dependence not easy to decipher (see, for363

instance, Refsgaard et al. [2006], Kavetski et al. [2006] and Beven [2006]). The interested364

reader is also referred to Montanari and Grossi [2008] for an additional discussion on the365

meta-Gaussian approach and error dependency. It is important to note that the model366

error should be representative of model performances in validation.367

4. Application of the Proposed Framework: Integrating Hydrological Model

Implementation and Uncertainty Assessment

Estimating the probability distribution of the true value of the variable to be predicted368

by a hydrological model (prediction uncertainty) is equivalent to simultaneously carrying369

out model implementation and uncertainty assessment. The framework for estimating the370

probability density function of model prediction, fQ (Q), was described in Section 3. Here371

we show how eq. (8) can be applied in practice.372

D R A F T August 20, 2012, 12:45am D R A F T



MONTANARI AND KOUTSOYIANNIS: PROCESS-BASED MODELING OF UNCERTAIN SYSTEMS X - 19

We assume that the probability density functions of model parameters, input data and373

model error are known, for instance because they were already estimated by using proce-374

dures such as those found in the hydrological literature (see, for instance, Clark and Slater375

[2006], McMillan et al. [2011], Renard et al. [2011] and Di Baldassarre and Montanari376

[2009] for data uncertainty; Vrugt et al. [2007], Ebtehaj et al. [2010] and Srikanthan et al.377

[2009] for parameter uncertainty; and Montanari and Brath [2004], Montanari and Grossi378

[2008] and Krzysztofowicz [2002] for model error). A practical demonstration showing379

how this can be determined is contained in Section 6 below. Some of the above mentioned380

techniques require the estimation of model likelihood, which may imply approximations in381

the definition of the related uncertainties. For instance, likelihood assessment is required382

by DREAM, which is used in the applications presented in Section 6 to estimate param-383

eter uncertainty. However, methods are available to avoid the use of the likelihood to384

define the above densities. For instance, bootstrap and resampling methods can be used385

for parameter uncertainty [Ebtehaj et al., 2010; Srikanthan et al., 2009]. It is important to386

note that definition of the above densities is a key task as an imperfect estimation of input387

and parameter uncertainty would propagate through the simulation chain thus inducing388

lack of fit. It is well known that the identification of such distributions is still a challenging389

task in hydrology. In particular, for the data the problem still remains a relevant research390

issue. Information on observation error, and the related probability distribution, can be391

used to this end (see, for instance, Pelletier [1987]).392

Under the above premises the double integral in eq. (8) can be easily computed through393

a Monte Carlo simulation procedure, which can be carried out in practice by performing394

many implementations of the deterministic hydrological model S (Θ,X).395
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In detail the simulation procedure is carried out through the following steps that refer396

to the flowchart in Figure 1:397

1. A parameter vector for the hydrological model is picked up at random from the398

model parameter space according to the probability density fΘ(Θ).399

2. An input data vector for the hydrological model is picked up at random from the400

input data space according to the probability density fX(X).401

3. The hydrological model is run and a model prediction (or a vector of predictions)402

S(Θ,X) is computed.403

4. An outcome of the model error (or vectors of errors) is picked up at random from404

the model error population according to the probability density fe(e) and added to the405

model prediction S(Θ,X).406

5. The simulation described by items from 1 to 4 is repeated j times. Therefore we407

obtain j (vectors of) outcomes of the prediction Q.408

6. Finally the probability density fQ (Q) is inferred through the realizations mentioned409

in item 5.410

It is important to note that j needs to be sufficiently large, in order to accurately411

estimate the probability density fQ(Q). Generally, a good compromise of accuracy and412

computational efficiency to find an optimal j value should be evaluated case by case.413

Once the probability distribution of the true value to be predicted Q is known we414

obtain a best estimate for the prediction along with an assessment of uncertainty for a415

given confidence level, under the above assumptions that are further discussed in the next416

Section of the paper.417
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For the practical application of the multi-model approach, the whole simulation pro-418

cedure is to be repeated for any subsequent candidate model therefore obtaining the419

individual estimates for f
(i)
Q (Q) to be averaged according to eq. (10).420

In principle, the above framework allows one to estimate the single contribution of each421

uncertainty source. For instance, if we are interested in the impact of parameter uncer-422

tainty, the simulation procedure can be carried out by skipping items 2 and 4, therefore423

neglecting the impact of data uncertainty and model error. However, we should be fully424

aware that neither in the proposed framework nor in the real world are uncertainties nec-425

essarily additive. Thus, even if assessment of individual impacts is possible, these latter426

cannot be summed up a posteriori to assess the overall prediction uncertainty.427

The algorithm presented above has some similarity with the operational flow chart of428

other simulation methods like GLUE or multi-model approaches. The relevant difference429

is the use of the model error to summarize uncertainties other than those induced by430

imprecise input data and parameters. In this way likelihood computation can be avoided.431

We stress once again that, in order to preserve the statistical consistency that is ensured432

by the underlying theoretical development, the probability distribution of the model error433

must be reliably inferred with the support of statistical tests.434

5. Discussion of the Underlying Assumptions

Like any scientific method, the blueprint proposed in Sections 3 and 4 is based on435

assumptions in order to ensure applicability. When dealing with uncertainty assessment436

in hydrology, assumptions are often treated with suspicion, because it is felt that they437

undermine the effectiveness of the method and therefore its efficiency and credibility with438

respect to users. We stress here that assumptions (typically simplifying ones) are a means439
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to reach a better understanding of the behaviors of natural processes and allow science440

to be effectively put into practice. As a matter of fact, assumptions are unavoidably441

needed to set up models, calibrate their parameters and estimate their reliability, whatever442

approach is used. Evidently, flawed assumptions may falsify statistical inference as well443

as any alternative model of uncertain and deterministic systems. Therefore the target of444

the researcher should not be to avoid assumptions, but rather discuss them transparently,445

evaluate their effects and, when possible, check them, for instance through statistical446

testing.447

In order to discuss the assumptions conditioning the blueprint we introduced above,448

first we note that we assumed that the uncertainty of model outputs only depends on449

input data uncertainty, parameter uncertainty and model error, according to eq. (1)450

which states that model output itself only depends on input data, parameters and model451

structure S. Therefore, some sources of uncertainty are not taken explicitly into account,452

like for instance operation uncertainty [Montanari et al., 2009] and discretisation errors453

when dealing with daily data. Indeed, several uncertainties are not explicitly accounted for454

in any uncertainty assessment method. To this regard, we would like to point out that the455

model error, for a given model and given input data and parameters, implicitly takes into456

account, in an aggregated and very practical form, all the sources of uncertainty that make457

the model output different with respect to observed values. However, other uncertainties458

sources, like for instance uncertainty in the initial conditions and state variables, could459

be included explicitly, provided the related probability distributions are quantified and460

random outcomes for their values are randomly picked up at each simulation step. We461

did not include additional uncertainties to simplify notation.462
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Second, we assumed that parameter uncertainty is independent of input uncertainty. If463

the data are sufficient, this assumption is reasonable, because parameters of a given model464

depend on statistics of the input data and not their particular values [Casella and Berger ,465

1994]. A practical demonstration of the limited sensitivity of rainfall-runoff model output466

to artificially induced input errors was recently given by Montanari and Di Baldassarre467

[2012]. We must note, however, that the data are seldom of sufficient size when fitting468

hydrological models. As a result, parameters often turn out to be dependent on the input469

uncertainty (so that changes in input data result in changes of parameters).470

Further assumptions may be needed to estimate the probability density fe of model er-471

ror, which might be non-Gaussian and affected by heteroscedasticity. For instance, in the472

application presented in Section 6 the meta-Gaussian approach by Montanari and Brath473

[2004] is applied. In brief, the method recognizes the dependence on model prediction of474

the conditional probability distribution of model error. In this way change of the statis-475

tical properties during time is efficiently modeled and therefore the marginal probability476

distribution of the model error is allowed to be heteroscedastic (see Section 6 and Monta-477

nari and Brath [2004]). The meta-Gaussian approach assumes that the model error does478

not depend on parameter and data uncertainty. In this case also, if the data are sufficient479

the assumption is reasonable. We checked it with extended simulation experiments that480

are independently presented by Montanari and Di Baldassarre [2012].481

In principle the above assumptions of independence could be removed by conditioning482

the model error and parameter uncertainty on data. Parameter uncertainty can be condi-483

tioned by calibrating the hydrological model for different outcomes of the input data from484

the related probability distribution. The model error can be conditioned by estimating485
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its probability distribution at each step of the simulation procedure described in Section486

4, therefore obtaining different error probability densities for different input data and pa-487

rameters. The main problem with this solution is given by the increased computational488

requirements. We further discuss this issue in Section 6.4.489

If other approaches are used to derive the probability distribution of the model error,490

different assumptions would be introduced depending on the (possibly informal) approach491

that is adopted. No matter which method is used, any additional assumption introduced492

for inferring fe should be appropriately checked.493

Another relevant issue has been pointed out by some researchers (see, for instance,494

Beven et al. [2011]) who are convinced that epistemic errors arising from hydrological495

models might be not aleatory and therefore are difficult (or impossible) to model by using496

stochastic approaches. In our view, variables are either deterministic or random. That is,497

if they cannot be described deterministically, then they can be modeled by using stochas-498

tics, no matter if their stochastic dynamics are driven by epistemic uncertainty or natural499

variability. Another issue that is frequently raised is that epistemic errors are affected by500

non-stationarity and therefore cannot be efficiently modeled by using stochastics [Beven501

and Westerberg , 2011]. Actually, such a view neglects the fact that even the definition of502

stationarity and nonstationarity relies on the theory of stochastic processes [Koutsoyian-503

nis , 2006, 2011] and thus dealing with it is necessarily an issue of applying stochastics.504

In our opinion, non-stationarity might be necessary to enrol when environmental changes505

are present, but it is not induced by epistemic uncertainty. Irrespective of its origin,506

non-stationarity can be efficiently dealt with by using non-stationary stochastic processes507

[Brockwell and Davis , 1987], and by introducing and checking suitable assumptions. For508
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instance, the stochastic kernel introduced in eq. (3) and (4) is conditioned on the input509

data and therefore its marginal statistical properties are changing in time. In addition,510

in the case studies we present here the model error is allowed to be heteroscedastic and511

correlated. Indeed, as we mentioned above, the meta-Gaussian approach provides a con-512

ditional probability distribution of the model error that is changing in time depending on513

the simulated river flow [Montanari and Brath, 2004].514

It is important to note that the blueprint proposed here relies much on data. Although515

probability distributions of input data, model parameter and model error could be es-516

timated according to expert knowledge, data analysis is a fundamental requirement for517

assessing uncertainty. Therefore, particular attention should be paid to data collection518

and checking, to avoid as much as possible the use of disinformative observations (for a519

detailed discussion on this issue the interested reader is referred to Beven and Westerberg520

[2011]).521

One may be concerned by the computational requirements of the proposed framework,522

especially when dealing with complex modeling approaches. For instance, spatially dis-523

tributed models might require sampling from several parameters and might involve sig-524

nificantly longer computational times. This issue is indeed a matter of concern for any525

numerical integration procedure. It needs to be carefully considered in view of the length526

of the simulation period and the minimal number of simulated data points that is required527

to reliably infer the probability distribution of the model output.528

One reviewer of this paper asserted that, strictly speaking, none of the above assump-529

tions is satisfied. We believe that if we accept such an assertion in its generality, we530

would convict all models and perhaps all scientific disciplines except pure mathematics,531
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because all sciences that describe Nature seek to provide approximations of reality. It is532

well known that all models are wrong, and, likewise, all assumptions are never strictly533

satisfied. The purpose in modeling is to produce approximations of reality, which are534

tested whether or not they are satisfactory. If they are not, then the model should be535

changed, trying different model structures or perhaps relaxing some assumptions.536

However, our practical experience suggests that the assumptions we introduced are rea-537

sonable. For instance, we believe that data uncertainty is indeed playing a negligible effect538

on parameter uncertainty in most real world applications (see, for instance, Montanari539

and Di Baldassarre [2012]).540

6. Examples of Application

In order to illustrate the proposed blueprint with practical examples, two applications541

are presented here below that refer to different rainfall-runoff models applied to catchments542

located in Italy. In detail, the catchments are those of the Secchia River at Bacchello543

Bridge and the Leo River at Fanano, in the Emilia-Romagna region, in Northern Italy.544

Figure 2 shows their locations.545

6.1. The case study of the Secchia River

The Secchia River is located in northern Italy and is a tributary to the Po River. The546

catchment area is 1214 km2 at the Bacchello Bridge river cross section that is located547

about 62 km upstream of the confluence in the Po River. The maximum altitude is 2121548

m above sea level (a.s.l.) at Mount Cusna. The main stream length up to Bacchello549

Bridge is about 98 km and the climate over the region is continental.550
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Hourly rainfall and temperature data are available for the years 1972 and 1973 in five551

raingauges. For the same period, hourly river flow data at Bacchello Bridge were collected.552

To test the blueprint proposed here over an extended data set with controlled uncer-553

tainty, we used synthetic hourly rainfall, temperature and river flow data that cover a554

50-year observation period. The same data set was used by Montanari [2005] who gives555

additional details. Synthetic data simulation is briefly described here below.556

Rainfall data, for the 5 raingauges mentioned above, were generated using the gener-557

alized multivariate Neyman-Scott rectangular pulses model [Cowpertwait , 1995] that was558

calibrated using the observed data. Mean areal rainfall was then computed as a weighted559

sum of the rainfall in each raingauge, where weights were estimated by using the Thiessen560

polygons. Rainfall uncertainty was introduced through weight corruption by randomly561

picking up their value, at each time step, from a uniform distribution in the range ±562

20% of the related uncorrupted value. The obtained weights were rescaled so that their563

cumulative sum is equal to one.564

Synthetic hourly temperature data were generated by applying a fractionally differenced565

ARIMA model (FARIMA; see Montanari et al. [1997]). A mean areal value for temper-566

ature was obtained by rescaling the synthetic observations to the mean altitude of the567

basin area, by adopting a standard temperature gradient. Temperature data were not568

corrupted, in view of their limited uncertainty with respect to rainfall and river flow.569

Synthetic river flow data were generated by using the previously generated synthetic570

rainfall and temperature records as input to the lumped rainfall-runoff model ADM [Fran-571

chini , 1996]. The ADM model is a nine-parameter lumped conceptual scheme that was572

calibrated against historical data obtaining a Nash efficiency [Nash and Sutcliffe, 1970] of573
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0.81 in validation (see Montanari [2005] for more details). Table 1 presents the model pa-574

rameters. River flow data were corrupted by multiplying each observation by a coefficient575

that was picked up, at each time step, from a uniform distribution in the range 0.8−1.2.576

The coefficient of determination of the linear regression of corrupted versus uncorrupted577

river flow data is 0.86.578

The observations included in the first 30 years of the synthetic record were used to cali-579

brate a rainfall-runoff model that has reduced complexity with respect to ADM, therefore580

introducing model structural uncertainty (see below for a detailed description). Years from581

31 to 40 were used to validate the model itself and to infer the probability distribution582

of the model error by using the meta-Gaussian approach by Montanari and Brath [2004].583

The goodness-of-fit was checked by using the statistical tests described in Montanari and584

Brath [2004], which were satisfied over the whole range of river flows.585

Finally, data for the years 41-50 of the observation period were used to test, in full586

validation mode, the proposed blueprint (rainfall-runoff modeling and uncertainty assess-587

ment).588

The rainfall-runoff model we used for the Secchia River is HyMod, namely, the same589

5-parameter lumped and conceptual rainfall-runoff model that was used by Montanari590

[2005]. HyMod was introduced by Boyle [2000] and extensively used thereafter. Model591

parameters are shown in Table 1. Evapotranspiration is accounted for by using the ra-592

diation method [Doorembos et al., 1984]. With a total of only five parameters, HyMod593

can be considered an approach of reduced complexity with respect to ADM and therefore594

model structural uncertainty is introduced.595
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HyMod was calibrated by using DREAM [Vrugt et al., 2007], in which a standard Gaus-596

sian likelihood function was used. DREAM is a modified SCEM-UA global optimisation597

algorithm [Vrugt et al., 2003]. It makes use of population evolution like a genetic algo-598

rithm together with a selection rule to assess whether a candidate parameter set is to be599

retained. The sample of retained sets after convergence can be used to infer the proba-600

bility distribution of model parameters. Herein, a number of 6000 parameter sets were601

retained, which indirectly determine the density function fΘ (Θ) of the parameter vector602

in a non-parametric empirical manner, fully respecting the dependencies between different603

parameters. HyMod explained about 81% and 82% of the river flow variance in calibration604

and validation, respectively, with the best DREAM parameter combination from the joint605

Markov chains. The values of the corresponding Nash efficiency are 0.81 - 0.82. These606

are feasible values in real world applications. Figure 3 reports a comparison over a 1500607

hour window of the full validation period (years 41-50) between observed and simulated608

hydrographs.609

6.2. The simulation procedure for the Secchia River

As we mentioned above, the simulation procedure refers to the years 41-50 of the obser-610

vation period. HyMod was run 5000 times, by randomly picking up parameter sets from611

those retained by DREAM and accounting for input uncertainty by corrupting, for each612

simulation, the rainfall data as described in Section 6.1 (that is, by reproducing the same613

type of error that was introduced in the synthetic data set. Namely, a perfect uncertainty614

assessment for the rainfall data was assumed). A random outcome from the probabil-615

ity distribution of the model error was added to each observation, therefore obtaining,616
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for each simulated river flow, a sample of 5000 points that allows to infer the related617

probability distribution.618

Figure 4 shows the 95% prediction limits for the same 1500 hour window of the full619

validation period mentioned above, along with the corresponding observations. By looking620

at the overall prediction, one notes that 5.4% and 4.3% of the observations are located621

above the upper and below the lower limit, respectively, against theoretical values of622

2.5% (at the 95% confidence level). These results indicate a slight underestimation of the623

band widths. Figure 5 shows a coverage probability plot (CPP), which gives information624

on the accuracy of the uncertainty estimation. A placement of the points along the 1:1625

line is expected. For more details on drawing and interpreting the CPP plot (which is626

sometimes referred to as probability plot or Q-Q plot) see Laio and Tamea [2007]. For627

the present case, we note that Figure 5 confirms the underestimation of the band width,628

which nevertheless is scarcely significant in practice.629

6.3. The case study of the Leo River

The catchment area of the Leo River basin at the closure section of Fanano is 64.4 km2
630

and the main stream length is about 10 km. The maximum elevation in the catchment is631

the Mount Cimone (2165 m a.s.l.), which is the highest peak in the northern part of the632

Apennine Mountains. The climate is continental.633

Daily river flow data at Fanano are available for the period January 1st, 2003 - October634

26th, 2008, for a total of 2126 observations. For the same period, daily mean areal635

rainfall and temperature data over the catchment are available, as estimated by the Italian636

National Hydrographic Service based on observations collected in nearby stations.637
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The observations collected from January 1st 2003 to December 31st 2006 were used638

for calibrating the rainfall-runoff model, while the period January 1st 2007 - October639

26th 2008 was reserved for its validation. We estimated the probability distribution of the640

model error by referring to the first year of the validation period (2007), in order to obtain641

an assessment of fe (e|Θ,X) in a real world application. Finally, the period January 1st642

2008 - October 26th 2008 was reserved for testing, in full validation mode, of the proposed643

blueprint (rainfall-runoff modeling and uncertainty assessment).644

The rainfall-runoff model is AFFDEF [Moretti and Montanari , 2007], a spatially-645

distributed grid-based approach where hydrological processes are described with646

physically-based and conceptual equations. AFFDEF counts 8 calibrated parameters,647

which are described in Table 1. In order to limit the computational requirements, and in648

view of the limited catchment area, the Leo river basin was described by using only one649

grid cell, therefore applying a lumped representation. AFFDEF was calibrated by using650

DREAM [Vrugt et al., 2007], again by using a standard Gaussian likelihood function.651

Herein, a number of 32000 parameter sets was retained. Figure 6 shows the probability652

density function for the model parameters. They all appear to be unimodal and well653

defined. Parameter values are in agreement with what one would expect from AFFDEF654

applications to similar catchments [Moretti and Montanari , 2007].655

AFFDEF explained about 57% and 47% of the river flow variance in calibration and656

validation, respectively. The values of the corresponding Nash efficiency are 0.59 - 0.36.657

Figure 7 depicts a comparison during the validation period (2007 and 2008) between ob-658

served and simulated hydrographs. This latter was obtained by using the best DREAM659

parameter set. We can see that a significant uncertainty affects the model performance,660
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which is unlikely merely due to lumping the model at catchment scale. We are interested661

in checking whether the proposed blueprint provides a consistent assessment of such un-662

certainty. The probability distribution of the model error was again inferred by using the663

meta-Gaussian approach, which provided a satisfactory fit for river flows greater than 0.5664

m3/s.665

6.4. The simulation procedure for the Leo River

No information is available about input uncertainty. This is an important limitation666

in many practical applications. In particular, input uncertainty is usually dominant in667

real time flash-flood forecasting, where input rainfall to a rainfall-runoff model is usually668

predicted to increase the lead time of the river flow forecasting. If a probabilistic prediction669

for rainfall is available then input uncertainty can be efficiently taken into account in670

the blueprint proposed above. Alternatively, input uncertainty can be estimated using671

expert knowledge, Bayesian procedures like BATEA [Kavetski et al., 2006] or conditional672

simulation methods [Clark and Slater , 2006; Götzinger and Bárdossy , 2008; Renard et al.,673

2011]. For the present application, in absence of any information and similarly to Vrugt et674

al. [2008] and Renard et al. [2010], we introduced in each simulation and each data point675

a rainfall multiplier that was picked up from a Gaussian distribution with unit mean and676

standard deviation equal to 0.1.677

A number j = 5000 of AFFDEF simulations were run during the 300-day full validation678

period January 1st 2008 - October 26, 2008. A random outcome from the probability679

distribution of the model error was added to each observation, therefore obtaining, for680

each simulated river flow, a sample of 5000 points.681
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Figure 8 shows the 95% prediction limits for the full validation period, along with the682

corresponding observations. The results confirm the relevant uncertainty that is antici-683

pated by model performance. In fact, the prediction bands cover a large range of river684

flows. The observations located above the upper and below the lower limit are 7.3% and685

9.1%, respectively, for river flows greater than 0.5 m3/s. In this case also, the width of686

the prediction limits appears to be slightly underestimated. Figure 9 shows the CPP plot687

for the 300-day full validation period, for river flows greater than 0.5 m3/s. The slight688

underestimation of the band width is confirmed.689

It is interesting to inspect the reasons for the underestimation of the prediction limits690

width. In fact, one may note in Figure 8 that the lower prediction limit is satisfactorily691

estimated, with the only exception of the final part of the validation period where ob-692

servations systematically fall sligthly outside the limit itself. On the contrary, the upper693

limit seems to be too large and too narrow for low and high flows, respectively. Further694

information can be gained by comparing the probability density functions of observed695

and simulated data. Given that such distribution, for the simulated data, depends on the696

magnitude of the model prediction according to the assumptions of the meta-Gaussian697

approach (see Section 5), the above comparison must be carried out by focusing on a698

restricted range of river flows, for which distribution changes are negligible. Figure 10699

reports the result of the comparison for the validation period and the low flow range be-700

tween 2 m3/s (the observed mean) and 5 m3/s. It can be seen that the overestimation701

of the upper limit is confirmed. To further inspect this issue, the comparison was also702

performed between the probability density functions of actual and simulated model error703

for the validation period and the same low flow range. Results are shown in Figure 11.704
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One can see that the variability of the model error is overestimated as well. Therefore, it705

appears that the unsatisfactorily assessment of the upper prediction limit for low flows is706

mainly due to inefficient representation of the statistical properties of the model error by707

the meta-Gaussian approach, which is induced by the limited extension of the calibration708

period (the year 2007 only) that makes statistical analysis and testing scarcely efficient. In709

practice, the data base is not extended enough for the method to recognize the variability710

of the band width depending on the river flow magnitude. Then, the method tends to711

predict constant band width thus resulting in overestimation and underestimation for low712

and high flows, respectively.713

Other reasons for the lack of fit could be improper characterisation of input and param-714

eter uncertainty as well as failure of the fulfilment of the underlying assumptions and in715

particular that of independence between the model error and parameter/data uncertainty716

that is adopted by the meta-Gaussian approach. In fact, the statistical properties of the717

model error were estimated by referring to the simulation obtained with the best DREAM718

parameter combination from the joint Markov chains. Actually, the error behaviors in-719

ferred in this way are not fully representative of suboptimal input data and parameter720

vectors that are picked up randomly in the simulation procedure which may induce larger721

errors for the given data set. To avoid this problem, two solutions can be used: (a) to722

estimate the model error by referring to a parameter and data set that provides average723

performances instead of the best ones. This approach is computationally efficient and724

therefore preferable when computing resources are a matter of concern. (b) To infer the725

statistical properties of the model error at each simulation step, therefore significantly726

increasing computational requirements.727
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We believe that performances like those we obtained in the two case studies above728

are sufficiently accurate for real world decision making in view of the consistency of the729

related data base. For other cases the most appropriate solution should be decided after730

considering the related practical needs.731

7. Process-based stochastic modeling as a learning process

Uncertainty estimation allows one to quantitatively assess model reliability. If the732

model is process-based, the correctness of the underlying schematizations can be effec-733

tively checked by looking at the obtained prediction limits. In fact, these latter provide a734

comprehensive picture of the probability distribution of the prediction error, for a given735

confidence level and different river regimes. Therefore, prediction limits are a possible736

mean to check the correctness of our understanding of the hydrological processes at a737

given place. A closer look at the full probability distribution of the model error, for dif-738

ferent flow regimes (an example that refers to low flows is presented in Figure 11) allows739

one to complete the information about model failures in different hydrological situations,740

therefore providing useful indications on possible adjustments at the model structure (for741

a recent discussion on model structural adequacy see Gupta et al. [2012]). In particular,742

the above distribution indicates when the model fails and the type of failure that is occur-743

ring, so that its impact can be evaluated. The prediction error should be assessed by also744

considering input and parameter uncertainty, to better understand whether the weakness745

is related to model structure rather than calibration information. Analysis of parameter746

uncertainty, as depicted by the parameter distributions shown in Figure 6, allows one to747

assess whether the parameters themselves are well defined and what is their impact on748

the results. A flat distribution may correspond to a poorly defined parameter and/or a749
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scarce impact of the related process on the results. Such analysis is particularly useful750

when adopting a flexible model structure, to identify the relevant model components (for751

applications, see Montanari et al. [2006]; Fenicia et al. [2008]; Schoups et al. [2008]).752

8. Conclusions and discussion

A blueprint is presented to introduce a novel methodological scheme for estimating753

the uncertainty of the output from a process-based (deterministic) hydrological model754

through the estimation of the related probability distribution. The scheme is obtained755

by developing a theoretical formulation to convert a deterministic hydrological model756

into a stochastic one, therefore incorporating randomness in hydrological modeling as a757

fundamental component. The scheme shows that to include an arbitrarily complex deter-758

ministic model within a stochastic framework, where randomness is a fundamental part759

of the system, is in principle possible. Although we explicitly focused on process-based760

approaches, the blueprint that we are proposing is applicable to any deterministic scheme.761

The relevant feature of the approach herein proposed, which can be applied to models of762

arbitrary complexity, is that model likelihood computation can be avoided. In fact, the763

approach proposed replaces the single output of a deterministic model with the proba-764

bility distribution thereof which is estimated by stochastic simulation. A comprehensive765

discussion of the underlying simplifying assumptions and how they can be removed is766

presented, therefore allowing to structure modeling in a objective setting. The proposed767

method allows hydrological modeling and uncertainty assessment to be jointly carried out.768

Two applications are presented for illustrating the introduced blueprint. One of them769

makes use of synthetic data. Although simplifying assumptions are introduced to reduce770

the computational effort, the case studies show that the proposed approach is efficient771
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and provides a consistent uncertainty assessment. However, the results show that the772

opportunity of removing some of the above assumptions should be considered depending773

on the user needs.774

We believe the theoretical framework introduced here may open new perspectives re-775

garding modeling of uncertain hydrological systems. In fact, analyzing randomness within776

process-based system representations is an invaluable opportunity to improve system un-777

derstanding therefore increasing predictability, according to the “models of everywhere”778

concept [Beven, 2007]. In particular, it is possible to analyse (possibly) changing or779

shifting behaviors and their reaction to (human induced) changes. Moreover, we believe780

that the proposed procedure is very useful for educational purposes, putting the basis for781

developing a unified theoretical basis for uncertainty assessment in hydrology.782

A successful application of the proposed blueprint requires a reliable estimation of input,783

parameter and model uncertainty. The latter is obtained through the estimation of the784

probability density fe (e) of the model error. The meta-Gaussian model [Montanari and785

Brath, 2004; Montanari and Grossi , 2008] was herein used. However, in condition of786

data scarcity it may be scarcely efficient, as we show in Section 6.4. Data assimilation787

methods can also be considered, like machine learning and nearest neighbor techniques788

[Shrestha and Solomatine, 2006]. All the above methods rely on limiting assumptions and789

some of them are also computer intensive. We believe that estimating model uncertainty in790

hydrology is still a difficult problem for which more focused research is needed [Montanari ,791

2011]. The proposed framework may facilitate streamlining of this research and linking it792

with other components within an holistic modeling approach.793
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Finally, as mentioned above, estimation of parameter and input uncertainty is a relevant794

challenge as well which has an impact on model prediction. Possibilities are the GLUE795

method [Beven and Binley , 1992] and the DREAM algorithm [Vrugt et al., 2007] for796

parameter uncertainty, which nevertheless are computer intensive as well and may turn797

out to be impractical with spatially-distributed models applied to fine time scale at large798

catchments. Information on observation error, and the related probability distribution,799

can be used to estimate input uncertainty. Additional and focused research is needed800

to improve the above techniques therefore ensuring a more practical application of the801

framework herein proposed.802
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Table 1. Parameters of the ADM, HyMod and AFFDEF rainfall-runoff models. Symbols are

given for the parameters of AFFDEF which refer to Figure 6.

Parameter Unit ADM HyMod AFFDEF Symbol
Maximum soil storage capacity [cm] X X
Shape parameter of the storage capacity curve [-] X X
Surface/subsurface flow partition factor [-] X
Residence time quick flow reservoir [h] X
Residence time low flow reservoir [h] X X X K
Shape parameter of the drainage curve [-] X
Shape parameter of the percolation curve [-] X
Maximum drainage rate [cm/s] X
Maximum percolation rate [cm/s] X
Convectivity [cm/s] X
Diffusivity [cm2/s] X
Multiplying factor for soil storativity [-] X H
Multiplying factor for interception storage [-] X Cint

Residence time soil water [h] X Hs

Threshold temperature for snow accumulation [◦C] X Ts

Threshold temperature for snow melting [◦C] X Tmelt

Snow conversion factor [−] X SCF
Melting factor [mm/(◦C d)] X Mf
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Figure 1. Flowchart of the Monte Carlo simulation procedure for performing the numerical

integration in eq. (8) and (9).

Figure 2. Location of the case study basins (Italy). A and B indicate the positions of Bacchello

Bridge and Fanano, respectively.
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Figure 3. Case study of Secchia River. Comparison between observed and simulated hy-

drographs during a 1500-hour window included in the full validation period (years 41-50 of the

synthetic record). The simulated hydrograph was obtained by using the best DREAM parameter

set during the calibration period.

Figure 4. Case study of Secchia River. 95% prediction limits provided by HyMod during a

1500-hour window of the full validation period (years 41-50 of the synthetic record).
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Figure 5. Case study of Secchia River. CPP plot of the prediction provided by HyMod during

the full validation period (years 41-50 of the synthetic record).

Figure 6. Case study of Leo River. Probability density functions for the AFFDEF parameters

obtained with DREAM. Symbol meanings are given in Table 1.
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Figure 7. Case study of Leo River. Comparison between observed and simulated hydrographs

during the validation period (Jan 1st 2007 - October 26, 2008). The simulated hydrograph was

obtained by using the best DREAM parameter set during the calibration period.

Figure 8. Case study of Leo River. 95% prediction limits provided by AFFDEF during the

full validation period (Jan 1st, 2008 - Oct 26th, 2008), along with the corresponding observed

values.
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Figure 9. Case study of Leo River. CPP plot of the prediction provided by AFFDEF during

the full validation period (Jan 1st, 2008, Oct 26th, 2008).

Figure 10. Case study of Leo River. Comparison between the probability density functions

of observed and simulated data during the full validation period (Jan 1st, 2008, Oct 26th, 2008)

for the river flow range between 2 m3/s and 5 m3/s.
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Figure 11. Case study of Leo River. Comparison between the probability density functions

of actual and simulated model error during the full validation period (Jan 1st, 2008, Oct 26th,

2008) for the river flow range between 2 m3/s and 5 m3/s.
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