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Response to Reviewers' Comments 

We thankfully acknowledge the three Anonymous Reviewers for providing very constructive 

and useful comments that enabled us to perform additional research work (see completely new 

Table 1 and Figure 1), improve the clarity and quality of the presentation of our work, and 

correct some inaccuracies that were present in the original version of our manuscript. The next 

three sections reports a detailed description of how we addressed all the comments and 

suggestions of each reviewer. The following notation was used: 

Reviewer’s comment 

Reply from the authors 
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Response to Reviewer #1 

General Comments:  

This paper discusses the impact of data uncertainty on hydrological modeling and in particular on flood risk 

assessment studies. It is not quite clear what type of paper this is; considering its content, it seems to be an opinion 

paper; this is supported by the end of the introduction where it is stated that "the purpose of this paper is to 

illustrate the (..) effects of data uncertainty (..)" and to "indicate some potential ways forward to reduce this type of 

uncertainty". But the abstract as well as the conclusion are formulated as if it was a research paper. Given that 

there are only some simple examples for illustrative purposes, I would, however, not consider this contribution as a 

research paper. Furthermore, the content of the paper is confusing. Section 2 gives an overview of existing 

literature on river flow uncertainty and flood risk modeling (with some relevant literature missing, see detailed 

comments). Section 3 discusses to some extent the relation between model complexity and model sensitivity to river 

flow errors (with some simple examples). Section 4 gives some ideas about how to reduce the river flow uncertainty. 

None of the mentioned topics is developed in sufficient detail for a research paper. Overall, it appears to me that the 

paper contains interesting ideas (see also hereafter) but nothing is developed in sufficient detail for a research 

paper. It seems a bit like the paper had been written at a too early stage (see also p. 9, line 24: " We are currently 

testing several models with increasing complexity applied to different case studies."). 

We agree with Reviewer#1. The structure of the original manuscript was not appropriate and 

some comments could sound either speculative or misleading. We also recognize that we did not 

make clear whether our manuscript was meant to be an opinion or a research article. This is why 

we strongly revised our manuscript and carried out additional numerical experiments (see 

completely new Table 1 and Figure 1) to better explore the impact of observation uncertainty on 

hydrological modelling in view of model complexity (see below).  

The revised manuscript is to be considered a research paper. 

 

Detailed comments:  

- the paper seems to use the term "observation errors" as a synonym for "river flow errors"; I recommend 

reformulating at all instances since observation errors include e.g. errors on observed rainfall, temperature etc.  
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The Reviewer is right. The original version only looked at river flow errors. However, the 

revised version refers to observation uncertainty as we performed additional experiments were 

rainfall errors were also considered. In particular, the revised manuscript states: 

"To investigate the impact of data errors on model performance, calibration/validation 

experiments were repeated by referring to corrupted river flow and rainfall data. Corruption was 

obtained by introducing 4 types of data errors, which are described here below. 

 Corruption 1 – Random error in river flow data: it was obtained by multiplying each river 

flow observation by a random outcome from a uniform probability distribution in the range 

0.8-1.2. The magnitude of the introduced error is large, but comparable with what was 

detected by previous analyses with respect to state of the art monitoring techniques [9,11,13]. 

 Corruption 2 – Systematic bias in flood flow data [14,15]: it was obtained by multiplying the 

river flows greater than 150 m
3
/s by 1.25. This is a large but not unreasonable error that might 

be originated by extrapolation error in the rating curve (see above). 

 Corruption 3 – Rainfall error: it was obtained by introducing a random error in the raingauge 

weights that are used to estimate mean areal rainfall. In detail, the weight of each raingauge 

was randomly picked up, at each time step, in the range ±20% of its optimal value according 

to a uniform probability distribution. The obtained weights were rescaled so that their 

cumulative sum is equal to one. 

 Corruption 4 – Correlated noise in river flow data: it was obtained by multiplying each river 

flow observation by a correlated noise generated by using an autoregressive first-order linear 

stochastic process, with autoregressive coefficient equal to 0.5. The resulting noise has a unit 

mean and a standard deviation of 0.1, namely, statistics that are consistent with errors that are 

typically encountered in real world data [9,11,13]." 
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- start section 3: According to the introduction and the abstract, the paper focuses on the impact of river flow 

uncertainty on flood risk modeling arguing that this has rarely been done, which is certainly true; in exchange, I do 

not agree with the more general statement (start section 3) that "the impact of observation errors on hydrological 

modeling has been poorly investigated". As far as I see, there is a huge amount of literature on this (e.g. studies on 

the relation between uncertainty rainfall estimates and model uncertainty, e.g. the work of Bardossy et al.). The 

same holds for model identification in the face of data uncertainty (Vrugt et al, Beven et al., Freer et al., Kavetski et 

al); I recommend not mixing the two topics: effect of river flow uncertainty on flood risk estimation and the effect of 

data uncertainty (including input uncertainty!) on hydrological model identification (a far wider topic). 

The Reviewer is right. The original manuscript included inappropriate statements and did not 

clarify the original points of our research work. The revised manuscript clarifies the goal of our 

study in view of the state of the art. In particular, the revised manuscript states: 

"The above summary shows that considerable research work was devoted to estimate 

observation uncertainty in hydrology [9-17]. However, little attention was devoted to the most 

appropriate modelling approaches to be adopted to reduce its impact. For instance, the literature 

dedicated ample room to comparing the performance of different models (lumped versus 

distributed, conceptual versus physically-based, e.g. [18]), but the role of model complexity in 

the face of data uncertainty has remained largely unexplored. Experiences carried out in other 

scientific fields highlight that efficient solutions can be identified to minimise the effect of noise 

or bias in the data. For instance, in statistics a lot of attention is devoted to asymptotical 

properties of estimators to infer the probability distribution of parameters and results. Given that 

uncertainty is always present in hydrological modelling and will never be eliminated [19], we 

believe that there is the need for developing guidelines to drive the selection of the most 

appropriate model and calibration strategy depending on observation uncertainty and the actual 

information content of data.  

The purpose of this paper is to provide a first contribution to identify best modelling practices in 

hydrology to minimise the impact of observation uncertainty. In detail, we argue that an 

appropriate selection of hydrological model complexity and calibration strategy can increase the 

robustness of hydrological studies against data errors. We test the above hypothesis by 

performing an extended set of calibration/validation experiments. To this end, we used synthetic 
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hydrological data that were corrupted by errors, emulating the uncertainty typically affecting 

hydrological records [9, 11, 13-15]." 

 

- conclusion: Again, I don't think that it holds that the "impact (of data uncertainty) remains largely unexplored". 

The huge amount of hydrologic literature on modelling uncertainty contains many examples discussing the effect of 

data uncertainty. Here you focus on the uncertainty of river flow observations rather than on input uncertainty. This 

should be made clear.  

The revised manuscript made clear that the main elements of novelty of this paper are the 

exploration of the impact of data uncertainty in view of model complexity and the indication of 

modelling strategies to reduce this impact. In particular, that part of the conclusions was revised 

as follows:  

"Observation uncertainty is increasingly recognized to significantly affect hydrological 

modelling. A number of studies have attempted to estimate data errors and evaluate their impact 

on hydrological modelling. However, the actual impact of observation uncertainty in view of 

model complexity remains largely unexplored. Also, guidelines about the most appropriate 

modelling approaches to reduce the impact of the imprecision of hydrological data are still 

missing." 

 

- conclusion: as far as I know, there is considerable literature on the estimation of model parameters given input / 

model / output uncertainty; thus: what is new about your conclusion that we need to "perform hydrological model 

identification and calibration in the face of observation errors"?) 

As mentioned, the revised paper fully recognizes previous studies in the field with a large 

number of specific references. The novelty of our study is the investigation of the role of model 

complexity in reducing the impact of observation uncertainty. The introduction, discussion and 

conclusions were strongly revised accordingly (see above and revised manuscript).  
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- Conclusion: the idea of appropriate choice of model complexity to reduce impact of observational uncertainty is 

interesting and rather new (most papers on model complexity deal with the question of parameter identifiability but 

not with minimizing the impact of observational uncertainty); this paper would certainly be a valuable contribution 

if you could develop it around this idea 

We acknowledge the Reviewer for this comment. Indeed, we followed her/his precious 

suggestion and carried out several numerical experiment to explore the selection of appropriate 

model complexity to reduce the impact of observational uncertainty (see above). 

 

- Conclusion/abstract: is the sentence "the best modelling option to follow should be identified by (merely) relying 

on common sense, intuition and/or expert knowledge" not contradictory to the following sentence from the 

abstract?: "This paper shows how the effect of data uncertainty on hydrological modelling is difficult to predict by 

simply relying on intuition, common sense and expert knowledge" 

The Reviewer is right. The first sentence was not properly formulated. This was corrected in the 

revised manuscript. 

 

- literature: some relevant literature is missing, e.g. the work on total modelling error quantification by Kavetski et 

al., or the paper " Impacts of uncertain river flow data on rainfall-runoff model calibration and discharge 

predictions, by  McMillan et al., 2010, HP 

We thank the Reviewer for suggesting interesting papers on the topic. We followed her/his 

advice and added the following three references (see revised manuscript): 

"[40] Kavetski, D., G. Kuczera, and S. W. Franks. Bayesian analysis of input uncertainty in 

hydrological modeling: 1. Theory, Water Resour. Res., 42, W03407, 

doi:10.1029/2005WR004368, 2006a. 

[41] Kavetski, D., G. Kuczera, and S. W. Franks. Bayesian analysis of input uncertainty in 

hydrological modeling: 2. Application, Water Resour. Res., 42, W03408, 

doi:10.1029/2005WR004376, 2006b. 
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[42] McMillan H, Jackson B, Clark M, Kavetski D, Woods R. Rainfall uncertainty in 

hydrologic modelling: An evaluation of multiplicative error models, Journal of Hydrology, 400, 

83-94, 2011." 

 

Response to Reviewer #2 

Reviewer #2: The article has a somewhat unconventional structure in that it presents a narrative without worrying 

too much about scientific method. What I understand is that through a case study it becomes clear that measurement 

errors affect simple models more than more complex models. This is an interesting finding but I do not think that it 

is the first of its kind or that it is unique. The first author was editor of a special issue of WRR where much was 

explained about the role of uncertainty, also in measurement errors. There is a relation between measurement error, 

the information contained in the measurements (number of independent measurements), and the optimal complexity. 

The above mentioned special issue already contains an article concerning optimal model complexity, clearly related 

to measurement error. In computer science, this phenomenon is well studied and has led, for example, to the rather 

elegant theory of Vapnik. It is a bit difficult to define good advice concerning the article. For starters, I would 

recommend to re-write following a more orthodox structure: Intro, Methods&Materials, Results, Conclusions, 

Discussion. I know this may sound boring but it prevents the authors from just telling a speculative story. For 

example, page 11 lines 12-14: What does this mean? How can I use this/repeat this?  

Indeed, the are many papers dealing with the topic, but this is now fully recognized in the revised 

manuscript, including a number of specific references. 

For what concerns the WRR paper, (although there might be a misunderstanding as the Reviewer 

did not indicate a precise reference) that study is looking at hydrological measurements used as 

input data. Our study is completely different. We dealt with the uncertainty of the observations 

used to calibrate hydrological models and investigated the role of model structure in reducing the 

impact of such observation uncertainty.  

Lastly, it is our belief that (to avoid, for instance, what Taleb calls the ''ludic fallacy"), before 

extending elegant theories, a number of more modest and empirical studies are needed. 
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Anyhow, we fully recognize the limitation of our original manuscript (see above). We performed 

additional analyses (see new Table 1 and Figure 1) and the paper was strongly restructured. All 

the statements sounding like speculative stories were entirely removed (see revised manuscript).  

 

At page 10, we have had our introduction (errors may be relevant) and the main results (errors affect a simple 

model more than a less simple model). For some reason, the conclusion is said to be non-intuitive but anyone who 

has gone into some depth concerning model complexity and data availability would have a different intuition...  

We agree with Reviewer#2. Someone might have a different intuition. However, according to 

our experience, many expert modelers often (mis?)claim the principle of parsimony to support 

the use of simpler models when data errors are thought to be relevant. Their argument is that 

complex models may fit the noise in the data rather than the ''real signal".  

Anyhow, as mentioned, we do not aim at theorizing.  

Our point is that the role of model complexity in view of observation uncertainty should be 

carefully examined (not relying on common sense, intuition or elegant theories).  

To make this point clear, we revised that statement as follows (see revised manuscript):  

"The above results indicate that the sensitivity of hydrological models to observation uncertainty 

should be carefully examined to identify the optimal model complexity in the face of observation 

uncertainty, because the actual results may contradict intuition and common sense." 

 

At one point the authors suggest that observation errors reduce information content. True, but there are very good 

measures for this. Information is well defined within computer science through information theory, and so is the 

effect of measurement errors on information content. 

We acknowledge again the Reviewer for suggesting elegant theories. However, as mentioned, 

our objective is to explore via simulation experiments the role of model complexity in limiting or 

amplifying the impact of observation errors.  
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After page 10 follows a narration concerning the advantages and disadvantages of different stage/discharge curve 

establishment methods. This part is really rather speculative and has no clear link to the content of the first part. In 

a way, this should be part of a different article. 

We followed the Reviewers suggestion. As mentioned, the structure of the paper was strongly 

revised and this part, which shows possible strategies to reduce observation uncertainty, was 

significantly shortened.  

 

I think that the main point of the article is that there is necessary (but not sufficient) proof that measurement error 

affects optimal model complexity. I would suggest to make this the main point and link that to established theory. I 

would be happy to look at any further iterations in this direction. 

The main point of the article is to explore whether the choice of appropriate model structures can 

help reduce the impact of observation uncertainty. To this end, we carried out extended  

numerical exercises by referring to different types of data errors (see above). 

 

Response to Reviewer #3 

Reviewer #3: This paper deals with various issues on data uncertainty applied to hydrological modeling aka flood 

risk assessment studies.  The paper has potential, but falls short of its aims as it is not either a review or a research 

paper as is. Some issues touched, however, are interesting and insightful. Rather than dusmissing it, as I was 

tempted to recommend, I would rather give the authors the chance to revise it -- thoroughly in the presentation and 

organization of material, especially clearly stating from the onset its scopes. I also have the impression that the 

literature search could be made more thorough.  Moreover, the currently tested  models applied to different case 

studies quoted in the text should be integral part of the revised manuscript. If the authors decide to do so, I would be 

willing to review it as a research paper. 

We acknowledge the Reviewer for this constructive comment. Indeed, we followed her/his 

precious suggestion to make our manuscript a full research article (see above) and carried out 

several numerical experiment (see new Table 1 and Figure 1) to explore the selection of 

appropriate model complexity to reduce the impact of observational uncertainty. 

 



Highlights of the paper: 

 

"Data errors and hydrological modelling: the role of model 

structure to propagate observation uncertainty'' 

 

 
Alberto Montanari & Giuliano Di Baldassarre 

 

 We review the recent literature in the field of uncertainty in hydrological data  

 We discuss how this observation uncertainty may undermine the reliability of 

hydrological predictions 

 We show that the effect of data errors on hydrological model should be carefully 

evaluated in view of model complexity 

 We show interesting results in the role of model structures in limiting or amplifying the 

impact of observation uncertainty 

*Highlights (for review)
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Abstract 12 

Observation uncertainty is nowadays recognized as a serious issue undermining the reliability of 13 

hydrological studies. For instance, many recent contributions show that river flow observations 14 

are affected by errors that may reach 25% even when state-of-the-art measurement techniques 15 

are adopted. Yet, there is still little guidance by the literature on the most appropriate modelling 16 

strategies to be adopted under observation uncertainty. We carried out a series of simulation 17 

experiments and explored how the selection of appropriate model complexity can help reduce the 18 

impact of observation uncertainty. We found that model structure plays a relevant role and, in 19 

particular, a description of the relevant physical processes that come into play can effectively 20 

contribute to limit the impact of data errors and therefore significantly reduce overall uncertainty. 21 

 22 

Keywords: hydrology, observation uncertainty, monitoring techniques, model complexity. 23 

*Manuscript
Click here to download Manuscript: Montanari-DiBaldassarre-Revised-Text.doc Click here to view linked References

http://ees.elsevier.com/adwr/download.aspx?id=105171&guid=33db798f-abeb-4804-ae05-c25f1d63a5a9&scheme=1
http://ees.elsevier.com/adwr/viewRCResults.aspx?pdf=1&docID=3135&rev=1&fileID=105171&msid={4B0CB695-1A13-449B-9E6C-C879D5E69B32}


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

2 

 

1. Introduction  24 

Over the past two decades, hydrologists have devoted increasing attention to uncertainty 25 

assessment, by also focusing on the impacts of data errors on hydrological modelling and flood 26 

risk analysis (for a review, see [1-4]). Indeed, uncertainty assessment is one of the key research 27 

targets of the PUB initiative [5] of the International Association of Hydrological Sciences 28 

(IAHS). In particular, observation uncertainty has gained increasing attention, being its impact 29 

on global hydrological uncertainty more and more recognised. For instance, the term 30 

―disinformative data‖ was introduced by [6,7] to indicate erroneous observations that falsify the 31 

inference of water balance dynamics.  32 

As far as river discharge observations is concerned, best practices for measuring river 33 

discharge are summarised by [8]. A first extensive review of contributions dealing with 34 

uncertainty assessment for river flow data was already proposed by [9], who concluded that 35 

uncertainty in discharge observation varies in the range 8-20% at the 95% confidence level, 36 

depending on the monitoring technique that is used.  37 

Recently, the World Meteorological Organisation (WMO) updated the ―WMO Manual for 38 

Stream Gauging‖ [10], which is an interesting follow up of the previous edition. In Chapter 10, 39 

which is devoted to uncertainty of discharge measurements, it is stated that for observations 40 

obtained with the velocity-area method ―....it is not possible to provide absolute guidelines for 41 

making the qualitative evaluation of accuracy. As a general rule, the accuracy of most discharge 42 

measurements will be about 5 per cent, or qualitatively a good measurement. This is sometimes 43 

used as the baseline accuracy, with accuracy upgraded to excellent when measuring conditions 44 

are significantly better than average, and accuracy downgraded to fair or poor when conditions 45 

are significantly worse than average‖. Yet, when river flows are retrieved by using the rating 46 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

3 

 

curve method, uncertainty is expected to be much more significant. For instance, errors up to 47 

25% at the 95% confidence level were found by [11].  48 

A relevant matter of concern is the effect of this observation uncertainty on hydrological 49 

studies. It is expected that errors of such amount can induce significant uncertainty in flood risk 50 

assessment and engineering design. For instance, it was found that accounting for precipitation 51 

errors during hydrologic model calibration significantly affects the posterior distribution of the 52 

watershed model parameters and the uncertainty of model predictions [12]. Also, a number of 53 

authors investigated the uncertainty in the design flood caused by imprecision of the river flow 54 

data [13-17]. For instance, [14,15] investigated the effect of errors in river discharge data on 55 

flood frequency analysis and proposed an inference framework which makes explicit allowance 56 

for observation errors. More specifically, it was showed that errors induced on design flood 57 

estimation by the extrapolation of the rating curve can ―very substantially, indeed massively‖ 58 

corrupt the estimation of the design flood [15]. It was also concluded that a better 59 

characterization of the errors induced by the rating curve is needed to obtain a more precise 60 

estimation [15]. A novel methodology for evaluating the joint impact of sample variability and 61 

rating curve imprecision on design flood estimation was developed by [16]. Yet, they did not 62 

take into account the additional uncertainty in river discharge observations induced by the 63 

extrapolation of the rating curve, which is often the main source of errors in flood data. Lastly, in 64 

[17] a Bayesian framework including a multiplicative error on the rating curve was used to 65 

assess the influence of errors in discharge data on the outcomes of flood frequency analysis. 66 

More recently, the impact of flow data observation errors on the uncertainty of design 67 

floods was investigated by [13] using different error structures. A first analysis focused on the 68 

extrapolation error and used the error structure proposed by [15]. According to this error model, 69 

it was found that a systematic underestimation or overestimation is introduced by the 70 
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extrapolation of the rating curve [13]. A second analysis was based on the assumption that 71 

observation errors are Gaussian with zero mean and standard deviation proportional to the true 72 

river discharge and it was showed that the effect of this type of error, although conservative for 73 

design purposes, may be relevant. Finally, a third analysis was performed by using the results of 74 

[11] for the characterization of the global uncertainty in river flow data. The results of this study 75 

showed that the design flood estimation may be seriously affected by errors in flood data, 76 

especially when these are systematic [13]. 77 

The above summary shows that considerable research work was devoted to estimate 78 

observation uncertainty in hydrology [9-17]. However, little attention was devoted to the most 79 

appropriate modelling approaches to be adopted to reduce its impact. For instance, the literature 80 

dedicated ample room to comparing the performance of different models (lumped versus 81 

distributed, conceptual versus physically-based, e.g. [18]), but the role of model complexity in 82 

reducing the impact of data errors has remained largely unexplored. Experiences carried out in 83 

other scientific fields highlight that efficient solutions can be identified to minimise the effect of 84 

noise or bias in the data. For instance, in statistics a lot of attention is devoted to asymptotical 85 

properties of estimators to infer the probability distribution of parameters and results. Given that 86 

uncertainty is always present in hydrological modelling and will never be eliminated [19], we 87 

believe that there is the need for developing guidelines to drive the selection of the most 88 

appropriate model and calibration strategy depending on observation uncertainty and the actual 89 

information content of data. 90 

The purpose of this paper is to provide a first contribution to identify best modelling 91 

practices in hydrology to minimise the impact of observation uncertainty. In detail, we argue that 92 

an appropriate selection of hydrological model complexity and calibration strategy can increase 93 

the robustness of hydrological studies against data errors. We test the above hypothesis by 94 
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performing an extended set of calibration/validation experiments. To this end, we used synthetic 95 

hydrological data that were corrupted by errors, emulating the uncertainty typically affecting 96 

hydrological records [9, 11, 13-15]. 97 

Our conclusions suggest that more complex modelling approaches, based on the 98 

representation of the dominant hydrological processes, can be preferable to simpler modelling 99 

schemes, which tend to be more sensitive to data errors. Secondly, our experiments show that 100 

data still maintain a significant information even after they are corrupted by errors. Thus, 101 

particular care should be used in discarding the information provided by uncertain observations. 102 

 103 

2. Exploring the impact of data errors on rainfall-runoff models of increasing complexity 104 

As mentioned, how to reduce the actual impact of observation uncertainty on hydrological 105 

modelling has been insufficiently investigated. As a matter of fact, intuition suggests that data 106 

errors can seriously undermine the reliability of hydrological simulations. However, little 107 

guidance exists on the best modelling practices to be followed under observation uncertainty. 108 

On the one hand, common sense often suggests that simpler models, which are 109 

characterised by limited flexibility, are more robust and should therefore be preferred when data 110 

errors are suspected to be relevant. On the other hand, the non-linear structure of hydrological 111 

models may propagate errors in a counterintuitive fashion. 112 

Hence, to explore the role of model complexity in reducing the impact of observation 113 

uncertainty, we performed extensive simulation experiments, by referring to the Secchia River 114 

basin, located in Northern Italy.  115 

 116 
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2.1 The case study and the synthetic data sample 117 

The Secchia River flows from the Apennine Mountains in south-north direction. It is a 118 

right tributary to the Po River. The contributing area is 1214 km
2
 at the closure of the mountain 119 

basin, where the main stream length is about 70 km. The basin concentration time is about 12 120 

hours. The mean annual rainfall depth ranges between 700 and more than 1500 mm/year over the 121 

basin area. Observation of mean areal hourly rainfall and temperature over the basin, as well as 122 

river flows at the closure of the mountain basin, were collected for the year 1972. Rainfall was 123 

measured by using 5 tipping bucket raingauges displaced over the basin area, while river flows 124 

were measured through the rating curve method. 125 

A synthetic hourly rainfall, temperature and river flow data-base, covering a 55-year 126 

observation period was generated. More details can be found in [20]. 127 

Synthetic rainfall data, for the 5 raingauges mentioned above, were generated using the 128 

generalized multivariate Neyman-Scott rectangular pulses model [21] that was calibrated using 129 

the observed data. Mean areal rainfall was then computed as a weighted sum of the rainfall in 130 

each raingauge. Synthetic hourly temperature data were generated by applying a fractionally 131 

differenced ARIMA model (FARIMA, [22]). A mean areal value for temperature was obtained 132 

by rescaling the synthetic observations to the mean altitude of the basin area, by adopting a 133 

standard temperature gradient. 134 

Synthetic river flow data were generated by using the previously generated synthetic 135 

rainfall and temperature records as input to the lumped rainfall-runoff model ADM [23]. The 136 

ADM model is a nine-parameter lumped conceptual scheme that is derived from the Xinanjiang 137 

model [24] and it is based upon the same concept of probability distributed soil moisture storage 138 

capacity. The model is divided into two main blocks. The first block represents the water balance 139 

at soil level, that is, the balance between the moisture content and the incoming (precipitation) 140 
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and outgoing (evapotranspiration, surface runoff, interflow and baseflow) water flows. The 141 

second block represents the transfer of runoff production to the basin outlet which takes place in 142 

two distinct stages. The first represents the flow along the hillslopes towards the channel network 143 

while the second represents the flow along the channel network towards the basin outlet. 144 

Evapotranspiration is computed via the radiation method that yields estimates of the hourly 145 

evapotranspirated water that are used as input variables to the ADM model. The radiation 146 

method requires estimates of the mean monthly temperature, averaged over the basin, that is 147 

computed by using long term records of historical temperature data. ADM was calibrated against 148 

historical data obtaining a Nash-Sutcliffe efficiency of 0.81 in validation [25]. 149 

 150 

2.2 The calibration and validation experiment 151 

To investigate the role of model structure to limit or amplify the impact of data errors, we 152 

considered 3 rainfall-runoff models of increasing complexity. The first model is the linear 153 

reservoir which counts one parameter only, namely, the constant k [t] of the bottom discharge. 154 

The second model is HYMOD, a 5-parameter conceptual rainfall-runoff model that was 155 

introduced by [26]. HYMOD consists of a relatively simple rainfall excess model that is 156 

connected with two series of linear reservoirs: three identical reservoirs for the quick response 157 

and a single reservoir for the slow response. The third model is ADM, namely, the ―true‖ model 158 

that was used to generate the synthetic river flow data. For all models evapotranspiration is 159 

accounted for in the same way as for ADM, namely, by using the radiation method. 160 

The three models were calibrated 10 times by using different 5-year long records of 161 

rainfall, temperature and river flow, therefore using the first 50 years of the synthetic data record. 162 

It is interesting to note that these are ―true‖ data, with no errors. Calibration for all three models 163 

was performed by using the Genoud optimisation algorithm [26]. Validation after each 164 
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calibration experiment was performed over the 5-year period extended during the years 51-55 of 165 

the synthetic record. Table 1 shows the mean Nash efficiency E1 in validation computed over the 166 

10 different calibration experiments, for each model. In order to better inspect the reliability of 167 

the simulation of flood flows, Nash efficiency was computed for river flows greater than the 168 

mean value (about 16 m
3
/s) and greater than 50 m

3
/s. These latter efficiencies are indicated with 169 

the symbols E2 and E3, respectively, in Table 1. 170 

To investigate the impact of data errors on model performance, calibration/validation 171 

experiments were repeated by referring to corrupted river flow and rainfall data. Corruption was 172 

obtained by introducing 4 types of data errors, which are described here below. 173 

 Corruption 1 – Random error in river flow data: it was obtained by multiplying each river 174 

flow observation by a random outcome from a uniform probability distribution in the range 175 

0.8-1.2. The magnitude of the introduced error is large, but comparable with what was 176 

detected by previous analyses with respect to state of the art monitoring techniques [9,11,13]. 177 

 Corruption 2 – Systematic bias in flood flow data: it was obtained by multiplying the river 178 

flows greater than 150 m
3
/s by 1.25. This is a relatively large, but not unreasonable, error that 179 

might be originated by extrapolation errors in the rating curve [14,15]. 180 

 Corruption 3 – Rainfall error: it was obtained by introducing a random error in the raingauge 181 

weights that are used to estimate mean areal rainfall. In detail, the weight of each raingauge 182 

was randomly picked up, at each time step, in the range ±20% of its optimal value according 183 

to a uniform probability distribution. The obtained weights were rescaled so that their 184 

cumulative sum was equal to one. 185 

 Corruption 4 – Correlated noise in river flow data: it was obtained by multiplying each river 186 

flow observation by a correlated noise generated by using an autoregressive first-order linear 187 

stochastic process, with autoregressive coefficient equal to 0.5. The resulting noise has a unit 188 
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mean and a standard deviation of 0.1, namely, statistics that are consistent with errors that are 189 

typically encountered in real world data [9,11,13]. 190 

The efficiencies E1, E2 and E3 obtained by analysing the corrupted data are given in Table 191 

1. A graphical representation of the results, which refers to one single calibration/validation 192 

experiment after data corruption 2, is given in Figure 1. The left panels show scatterplots of 193 

simulated (in validation mode) river flows by the three models against the corresponding true 194 

values. The right panels provide a visual assessment of the impact of data corruption, by showing 195 

the progress, for increasing river flows, of the absolute difference w [m
3
/s] between simulated 196 

river flows by the three models before and after data corruption. The plots in the right panels 197 

were smoothed with a moving average window encompassing 25 subsequent data points. 198 

 199 

2.3 Inspecting the performances of spectral calibration 200 

Spectral calibration of hydrological models [27,28] is a useful solution to fit process 201 

behaviours at selected time scales. Basically, spectral calibration is performed by comparing the 202 

periodogram of observed and simulated time series. In detail, the likelihood function to be 203 

maximised was originally proposed by [29] for stationary processes and is given by: 204 

 205 

      
 

    


























 



2/

1 ,
,logexp

N

j jejM

j

jejM
ff

J
ffL




   (1) 206 

 207 

where  is the parameter vector to be calibrated, j=2j/N are the Fourier frequencies, J is the 208 

periodogram of the N observed data, fM is the spectral density of the model output that depends 209 

on , and fe is the spectral density of the model error. The above likelihood is conditioned by the 210 

assumption of independence between fM and fe [27]. 211 
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To compute the objective function, the observed record is decomposed in the sum of sine 212 

and cosine waves with different frequency and the amplitude of each wave is matched with the 213 

corresponding one computed on the simulated record. The parameter set which ensures the best 214 

match is finally retained. If all the frequencies are matched, then the calibration produces similar 215 

results as the classical least squares procedure. However, a proper selection of the frequencies to 216 

be matched allows one to give more stress on short rather than long term properties of the 217 

observed record. When disinformative observations are suspected to be present at local scale, 218 

one possible option could be to optimise the long term properties of the series only, being the 219 

short ones possibly affected by local errors. Therefore, spectral calibration can be classified as a 220 

―selective‖ calibration strategy, where focus on different frequencies of the spectrum can be 221 

obtained by simply changing a routine parameter. However, it is not clear to what extent such a 222 

solution can be effective to weigh out disinformative data. 223 

To check the effectiveness of spectral calibration, the calibration/validation experiments 224 

described in Section 2.2 were repeated by using the Whittle‘s likelihood as objective function, in 225 

which the first 5% of the frequencies were not considered. The optimal number of frequencies to 226 

neglect should be identified by considering the type of error that is likely to be present. The 227 

results of the calibration/validation experiment with the spectral likelihood are given in Table 1. 228 

 229 

3 Results 230 

Table 1 provides a comprehensive overview of the impact of data uncertainty on model 231 

results depending on model complexity. As a premise, it is interesting to stress that ADM is the 232 

model that was used to generate the synthetic data set and therefore represents the ―perfect 233 

model‖. It is also important to highlight that validation, for each model, was performed against 234 

the ―error-free data‖. Namely, the river flows used to validate the models were not corrupted. By 235 
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looking at the indexes and graphs presented in Table 1 and Figure 1 the following conclusions 236 

can be drawn. 237 

 The ADM model is capable of reproducing the ―error-free data‖ reliably (Figure 1, top 238 

left panel). The very limited validation uncertainty (Nash efficiency close to 1) can be 239 

attributed to the fact that the model was calibrated with a relatively limited sample size 240 

(5-year record), which induces some parameter uncertainty. This outcome confirms the 241 

appropriateness of the calibration/validation procedure. 242 

 By reducing model complexity a correspondingly increasing model structural uncertainty 243 

is introduced (Figure 1, left middle and left bottom panel), which is due to progressive 244 

incapability to simulate the dominant processes and therefore the whole range of river 245 

flows. The fact the low flows dominate in number of data points (the average river flow 246 

is about 16 m
3
/s) justifies the fact that the failure is particularly noticeable for the higher 247 

flows (see also the values of the efficiencies E2 and E3 in Table 1). 248 

 A first relevant conclusion is that data corruption alone, although representative of the 249 

typical errors affecting hydrological observations [9,11,13], does not significantly affect 250 

the model performance in validation mode. In contrast, model structural uncertainty is 251 

responsible for a significant decrease of model performance. Actually, it brings the values 252 

of the Nash efficiencies far from unity, therefore closer to values that are typically found 253 

in practical applications. Although this result depends on the type of data corruption that 254 

is introduced, it does suggest that in many practical applications the inefficient model 255 

structure may be a major limiting factor, more than the presence of disinformative 256 

observations. 257 

 A second relevant conclusion is that the impact of data errors depends on model 258 

complexity. This results is not well highlighted by the mean Nash efficiencies presented 259 
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in Table 1, but becomes clearer if one looks at the mean absolute difference w [m
3
/s] 260 

computed over all calibration experiments. In fact, it amounts to 1.39 m
3
/s, 1.56 m

3
/s and 261 

2.00 m
3
/s for ADM, Hymod and linear reservoir, respectively. Moreover, a further 262 

demonstration is given by Figure 1, which refers to one calibration experiment after 263 

corruption 2. By comparing the right middle and right bottom panel with the results that 264 

refer to the ―perfect model‖ (Figure 1, right top panel), it is clear that the impact of data 265 

error increases for decreasing model complexity. In fact, the absolute perturbation w 266 

increases for the HYMOD model and the linear reservoir. This result suggests that the 267 

use of simpler models may not help reduce the impact of data errors. 268 

 A third relevant conclusion refers to the use of the selective calibration (obtained by 269 

discarding the highest 5% frequencies of the spectrum). While it gives similar results for 270 

the ADM model with respect to using least squares, worse efficiencies are obtained for 271 

the two less complex models, especially in the simulation of high flow conditions. 272 

Therefore selective calibration, i.e. discarding the highest frequencies that are most 273 

affected by local errors, does not help reduce the impact of data errors. This result, 274 

although still referred to the specific case study and data corruption, suggests that 275 

particular care should be used in discarding data that are supposed to be disinformative. 276 

Actually, in this case each data point brings an information, even if corrupted by an error, 277 

and the results show that neglecting it, in the attempt to cancel the error out, is not an 278 

efficient strategy. It is important to note that this is a drawback of selective calibration 279 

and not spectral calibration in general, which proved to be equivalent to least squares 280 

when all the frequencies are used. 281 

In summary, the message that emerges from the results is that, if measurements are made 282 

with state-of-the-art techniques, observation uncertainty alone has a reduced impact with respect 283 
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to model structural uncertainty, which is also affecting the impact of other errors with a feedback 284 

effect. Therefore, improving the model structure is definitely an important step forward to reduce 285 

hydrological uncertainty and the use of simpler models should not be justified by the suspected 286 

presence of (even relevant) data errors. 287 

The above results indicate that the sensitivity of hydrological models to observation 288 

uncertainty should be carefully examined to identify the optimal model complexity, because the 289 

actual results may contradict intuition and common sense. 290 

It must be noted that these results are case-study dependent and therefore, in principle, not 291 

general. Moreover, different outcomes may be obtained with different data corruptions, although 292 

we note that all the different error structures used here led to similar results.  293 

 294 

4. Discussion and Conclusions 295 

4.1 Ways forward to reduce observation uncertainty 296 

As mentioned, uncertainty in river flow data is much more relevant when the stage-297 

discharge rating curve is extrapolated beyond the measurement range used for its derivation. 298 

Some authors have proposed the use of hydraulic models to reduce the inaccuracies due to the 299 

extrapolation of rating curves [27-28]. Indeed, [28] showed that the indirect observations of 300 

discharges beyond the measurement range should better rely on a physically based models, 301 

instead of traditional extrapolation approaches based on analytical black-box relationships. It 302 

should be noted hydraulic studies of river reaches are an increasingly attractive option today in 303 

view of the broad availability of topographic data and model codes [29,30]. Such studies may 304 

help to obtain more reliable stage-discharge relationships in the extrapolation zone. A possible 305 

operational strategy could be to use the stage-discharge measurements to calibrate a hydraulic 306 

model and then to use the model to extrapolate the rating curve [28].  307 
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However, it must be said that the uncertainty of the hydraulic model, which is calibrated 308 

using ordinary flow data and then used to simulate extremely high flow conditions, is often not 309 

negligible and therefore needs to be carefully evaluated. For instance, a number of studies [e.g. 310 

31-33] have shown that the effective roughness coefficients may be different when evaluated for 311 

different flow conditions. It is then recommended to constrain the model uncertainty by using 312 

some direct observations during high water conditions. To this end, the current proliferation of 313 

remote sensing data [34-37], which has led to a sudden shift from a data-sparse to a data-rich 314 

environment for hydraulic modelling of floods [29] can be extremely valuable.  315 

As mentioned, observation errors reduce the information content of data, to the extent that 316 

a part of the data set may become ―disinformative‖ [6,7]. The results presented in this paper 317 

prove that particular care should be used to discard observations that may still contain some 318 

information, although corrupted. A potential solution could be to reduce the weight that is 319 

attributed to suspicious observations during the calibration phase.  320 

Actually, observation errors are anomalies in the related time series, which in some cases 321 

can be easily identified, especially if they are locally occurring. For instance, [38,39] dealt with 322 

outlier detection in hydrological data. However, in many cases it is indeed difficult to detect 323 

anomalies in observed hydrological patterns. Modelling exercises can be an interesting 324 

opportunity to this end. In fact, the inability of a model to fit data sets (or portions of them) could 325 

be an indicator of the presence of anomalies therefore suggesting the opportunity to reduce the 326 

weight of such observations during calibration. Therefore models can play an important role to 327 

identify disinformative data sets, even if one should be conscious that the model might assume a 328 

non behavioural structure in the attempt to fit anomalous behaviours of the data. Sensitivity 329 

analysis and comparison of results may help identify the best option. 330 

 331 
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4.2 The role of model structure in limiting the impact of data errors 332 

Observation uncertainty is increasingly recognized to significantly affect hydrological 333 

modelling [9-17, 40-42]. In the previous section, we argued that observation uncertainty can be 334 

reduced by using advanced methods offered, for instance, by the recent progresses in hydraulic 335 

modelling and remote sensing data, which can potentially open interesting perspectives. Also, 336 

simulation experiments, similar to the one herein presented, may help select appropriate 337 

modelling strategies and reduce the impact of observation uncertainty. 338 

This paper described a numerical study attempting to decipher the impact of data errors 339 

on the results of hydrological models of increasing complexity. We referred to the case of a river 340 

basin located in Northern Italy, for which we generated an extended synthetic data set, which 341 

was subsequently corrupted by introducing different types of errors. This procedure allowed us 342 

to inspect the uncertainty that is introduced by model inadequacy and data corruption. 343 

The result showed that, if measurements are made following state-of-the-art techniques 344 

[10,11], observation uncertainty has a limited impact, with respect to model structural 345 

uncertainty, on the outcomes of hydrological models. This result is particularly interesting as the 346 

above simplifications of the model structure are believed to be less impacting with respect to the 347 

actual simplifications introduced by hydrological models (with respect to reality). Moreover, 348 

model structural uncertainty also induces a feedback on the impact of data errors, which appears 349 

to be more significant for simpler models. Hence, improving the model structure via process 350 

understanding appears to be a crucial step forward to reduce hydrological uncertainty.  351 

Although these results depend on the specific case study and types of data corruption, 352 

they indicated that the sensitivity of hydrological models to observation uncertainty should be 353 

carefully examined to identify optimal model complexity and efficient strategies to limit the 354 
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impact of data errors, because the actual results may contradict intuition and common sense. For 355 

instance, the use of simpler models cannot be justified by the presence of data errors only. 356 

Lastly, the results showed that particular care should be taken in discarding the 357 

information content of uncertain observations. In hydrological modeling any information is 358 

important and the presence of data errors does not necessarily limit the usefulness of observed 359 

record. 360 
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Table and Figure Caption 478 

Table 1. Mean Nash efficiency E1, E2 and E3 in validation for the three considered models 479 

computed for the 10 different calibrations performed by using 5-year observation periods (years 480 

1-50 of the synthetic record) and least squares as objective function. E1, E2 and E3 are computed 481 

on all river flows, river flows greater than the mean value (about 16 m
3
/s) and greater than 50 482 

m
3
/s, respectively. Validation was performed by simulating the last 5-year period (years 51-55) 483 

of the synthetic record. Efficiencies for uncorrupted and corrupted data are reported (see Sections 484 

2.2 and 2.3). 485 

 486 

 Uncorrupted Corruption 1 Corruption 2 Corruption 3 Corruption 4 

Model E1 E2 E3 E1 E2 E3 E1 E2 E3 E1 E2 E3 E1 E2 E3 

Linear 

reservoir 
0.66 0.05 -1.10 0.66 0.05 -1.09 0.68 0.23 -0.56 0.66 0.07 -1.02 0.66 0.05 -1.10 

Hymod 0.85 0.74 0.56 0.85 0.74 0.56 0.86 0.77 0.63 0.85 0.75 0.58 0.85 0.74 0.57 

ADM 0.96 0.93 0.88 0.96 0.93 0.89 0.95 0.92 0.88 0.96 0.93 0.89 0.96 0.93 0.89 

Linear 

reservoir 

(spectral) 

0.60 -0.32 -2.16 0.59 -2.7‘ -8.36 0.65 -0.02 -1.30 0.59 -2.64 -8.18 0.52 -0.77 -3.45 

Hymod 

(spectral) 
0.76 0.60 0.34 0.84 0.73 0.54 0.81 0.71 0.56 0.84 0.73 0.53 0.70 0.49 0.37 

ADM 

(spectral) 
0.95 0.91 0.87 0.96 0.92 0.88 0.95 0.91 0.87 0.96 0.92 0.88 0.96 0.92 0.87 

 487 

 488 
Figure 1. Performance of the three models and data uncertainty for a selected calibration 489 

experiment (data corruption 2). The left panels show scatter-plots of observed versus simulated 490 

data without data corruption. The right panel show the progress, with respect to the magnitude of 491 

the true river flows, of the absolute differences between model simulation before and after data 492 

corruption. 493 
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